[1]
R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci. 51 (2006) 881-981.
DOI: 10.1016/j.pmatsci.2006.02.003
Google Scholar
[2]
R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103-189.
DOI: 10.1016/s0079-6425(99)00007-9
Google Scholar
[3]
N.Y. Zolotorevsky, A.N. Solonin, A.Y. Churyumov, V.S. Zolotorevsky, Study of work hardening of quenched and naturally aged Al–Mg and Al–Cu alloys, Mater. Sci. Eng. A 502 (2009) 111-117.
DOI: 10.1016/j.msea.2008.10.010
Google Scholar
[4]
M. Zha, Y. Li, R.H. Mathiesen, R. Bjørge, H.J. Roven, Microstructure evolution and mechanical behavior of a binary Al–7Mg alloy processed by equal-channel angular pressing, Acta Mater. 84 (2015) 42-54.
DOI: 10.1016/j.actamat.2014.10.025
Google Scholar
[5]
M. Zha, Y. Li, R.H. Mathiesen, R. Bjørge, H.J. Roven, High ductility bulk nanostructured Al–Mg binary alloy processed by equal channel angular pressing and inter-pass annealing, Scripta Mater. 105 (2015) 22-25.
DOI: 10.1016/j.scriptamat.2015.04.018
Google Scholar
[6]
D.R. Fang, Y.Z. Tian, Q.Q. Duan, S.D. Wu, Z.F. Zhang, N.Q. Zhao, J.J. Li, Effects of equal channel angular pressing on the strength and toughness of Al–Cu alloys, J. Mater. Sci. 46 (2011) 5002-5008.
DOI: 10.1007/s10853-011-5419-6
Google Scholar
[7]
E. Prados, V. Sordi, M. Ferrante, Tensile behaviour of an Al–4 wt. %Cu alloy deformed by equal-channel angular pressing, Mater. Sci. Eng. A 503 (2009) 68-70.
DOI: 10.1016/j.msea.2008.01.093
Google Scholar
[8]
M.I.A.E. Aal, Influence of the pre-homogenization treatment on the microstructure evolution and the mechanical properties of Al–Cu alloys processed by ECAP, Mater. Sci. Eng. A 528 (2011) 6946-6957.
DOI: 10.1016/j.msea.2011.05.072
Google Scholar
[9]
Y. Huang, J.D. Robson, P.B. Prangnell, The formation of nanograin structures and accelerated room-temperature theta precipitation in a severely deformed Al–4wt. % Cu alloy, Acta Mater. 58 (2010) 1643-1657.
DOI: 10.1016/j.actamat.2009.11.008
Google Scholar
[10]
M. Berta, P.J. Apps, P.B. Prangnell, Effect of processing route and second phase particles on grain refinement during equal-channel angular extrusion, Mater. Sci. Eng. A 410–411 (2005) 381-385.
DOI: 10.1016/j.msea.2005.08.026
Google Scholar
[11]
D.R. Fang, Z.F. Zhang, S.D. Wu, C.X. Huang, H. Zhang, N.Q. Zhao, J.J. Li, Effect of equal channel angular pressing on tensile properties and fracture modes of casting Al–Cu alloys, Mater. Sci. Eng. A 426 (2006) 305-313.
DOI: 10.1016/j.msea.2006.04.044
Google Scholar
[12]
B.O. Han, E.J. Lavernia, Z. Lee, S. Nutt, D. Witkin, Deformation behavior of bimodal nanostructured 5083 Al alloys, Metall. Mater. Trans. A 36 (2005) 957-965.
DOI: 10.1007/s11661-005-0289-7
Google Scholar
[13]
D. Witkin, Z. Lee, R. Rodriguez, S. Nutt, E. Lavernia, Al–Mg alloy engineered with bimodal grain size for high strength and increased ductility, Scripta Mater. 49 (2003) 297-302.
DOI: 10.1016/s1359-6462(03)00283-5
Google Scholar
[14]
H.W. Höppel, J. May, M. Göken, Enhanced Strength and Ductility in Ultrafine-Grained Aluminium Produced by Accumulative Roll Bonding, Adv. Eng. Mater. 6 (2004) 781-784.
DOI: 10.1002/adem.200306582
Google Scholar
[15]
Y.J. Li, X.H. Zeng, W. Blum, Transition from strengthening to softening by grain boundaries in ultrafine-grained Cu, Acta Mater. 52 (2004) 5009-5018.
DOI: 10.1016/j.actamat.2004.07.003
Google Scholar
[16]
J. May, H.W. Höppel, M. Göken, Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation, Scripta Mater. 53 (2005) 189-194.
DOI: 10.1016/j.scriptamat.2005.03.043
Google Scholar
[17]
J.R. Davis, Tensile Testing (Second Edition), Materials Park, Ohio, USA, (2004).
Google Scholar