Effect of CuO-TiO2 Eutectic on Thermal and Electrical Conductivities of CaCu3Ti4O12 Ceramics

Article Preview

Abstract:

In this work, CaCuxTiyO12 ceramics (2.7 ≤ x ≤ 3.3 and 3.25 ≤ y ≤ 4.75), related to excess and deficiency of CuO-TiO2 eutectic phase have been synthesized by coprecipitation method. The crystalline phases in the ceramics were identified by X-ray diffraction patterns, and the pellets have mainly presented CCTO and also exhibited CuO, TiO2 and CaTiO3 as secondary phases. The thermal conductivity of the ceramics was determined using the laser flash method in the temperature range of 300-1000 K. It was observed a decrement in thermal conductivity values as the amount of the eutectic phase decreased. The electrical DC conductivity has been measured by the two-probe method from 300-1000 K and it has been noted that both grain size and amount of eutectic phase influenced the electrical conductivity results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

117-122

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S.M. Shapiro: Solid State Communications Vol. 115 (2000), p.217.

DOI: 10.1016/s0038-1098(00)00182-4

Google Scholar

[2] D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West: Applied Physics Letters Vol. 80 (12) (2002) 2153-2155.

Google Scholar

[3] M.A. Subramanian, A.W. Sleight: Solid State Sciences Vol. 4 (3) (2002), p.347.

Google Scholar

[4] D. Thomazini, M.V. Gelfuso, G.M.S. Volpi, J.A. Eiras: Int. J. Appl. Ceram. Technol. Vol. 9 (2014), p.1.

Google Scholar

[5] W. Yuan, Z. Luo, C., Wang: Journal of Alloys and Compounds Vol. 562 (2013), p.1.

Google Scholar

[6] P. Zheng, R. Zhang, H. Chen, W. Hao: Journal of Electronic Materials Vol. 43 (6) (2014), p.1645.

Google Scholar

[7] G. Ren, J. Lan, C. Zeng, Y. Liu, B. Zhan, S. Butt, Y. Lin, C. Nan: JOM Vol. 67 (1) (2015), p.211.

Google Scholar

[8] L. Marchin, S. Guillemet-Fritsch, B. Durand: Progress in Solid State Chemistry Vol. 36 (2007), p.151.

DOI: 10.1016/j.progsolidstchem.2007.10.001

Google Scholar

[9] B. Liu, K. Zhou, Z. Li, D. Zhang, L. Zhang: Materials Research Bulletin Vol. 45 (11) (2008), p.1668.

Google Scholar

[10] T.B. Adams, D.C. Sinclair, A.R. West,:J. Am. Ceram. Soc. Vol. 89 (9) (2006), p.2833.

Google Scholar

[11] A.F.L. Almeida, R. R Silva, H.H.B. Rocha, P.B.A. Fechine, F.S.A. Cavalcanti, M.A. Valente, F.N.A. Freire, R.S.T.M. Sohn, A.S.B. Sombra: Physica B Vol. 403 (2008), p.586.

DOI: 10.1016/j.physb.2007.08.222

Google Scholar

[12] J. Lu, D. Wang, C. Zhao: Journal of Alloys and Compounds Vol. 509 (2011), p.3103.

Google Scholar

[13] B. Wang, Y. Pu, H. Wu, K. Chen, N. Xu: Ceramics International Vol. 39 (1) (2013), p. S525.

Google Scholar

[14] K. Neufuss, A. Rudajevová: Ceramics International Vol. 28 (2002), p.93.

Google Scholar