High Technology Applications of Barium and Strontium Ferrite Magnets

Article Preview

Abstract:

Ceramic magnets as barium ferrite or strontium ferrite have many applications in high technology. One of the reasons is the low cost when compared to competitor materials, as Alnico, MnBi, MnAl or NdFeB. In this study, the advantages and disadvantages of Ba and Sr ferrite magnets are discussed. One clear advantage is that ferrites are already oxides, and do not present the corrosion problems typical of NdFeB and other metallic alloys. As ferrites are oxides, the processing is much easier and cheaper. For example sintering can be done at air, and milling under wet condition. One of the main conclusions is the excellent ratio cost/benefit of ferrites, giving advantage in many applications. Special attention is given for application of ferrites in high efficiency motors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

134-139

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Goldman: Modern Ferrite Technology. (Springer 2nd edition New York, 2006).

Google Scholar

[2] A. Okamoto. The Invention of Ferrites and their Contribution to the Miniaturization of Radios. In GLOBECOM Workshops, 2009 IEEE, pp.1-6. DOI 10. 1109/GLOCOMW. 2009. 5360693.

DOI: 10.1109/glocomw.2009.5360693

Google Scholar

[3] M.J. Vries: 80 Years of Research at the Philips Natuurkundig Laboratorium (1914-1994) The Role of the Nat. Lab. at Philips. Pallas Publications, Amsterdam, (2005).

DOI: 10.5117/9789085550518

Google Scholar

[4] M.H. Makled, T. Matsui, H. Tsuda, H. Mabuchi, M.K. El-Mansy, K. Morii: Journal of Materials Processing Technology Vol. 160 (2005), p.229.

DOI: 10.1016/j.jmatprotec.2004.06.013

Google Scholar

[5] J.M.D. Coey. Scripta Materialia Vol. 67 (2012), p.524.

Google Scholar

[6] R.C. Pullar : Progress in Materials Science Vol. 57 (2012), p.1191.

Google Scholar

[7] S. Ruoho, M. Haavisto, E. Takala, T. Santa-Nokki, M. Paju: IEEE Transactions on Magnetics Vol. 46 (2010), p.15.

DOI: 10.1109/tmag.2009.2027815

Google Scholar

[8] M. Komuro, Y. Satsu, Y. Enomoto and H. Koharagi, Appl. Phys. Lett. Vol. 91 (2007), p.102503.

Google Scholar

[9] M. Marinescu, A.M. Gabay, S. Kodat, J.F. Liu, G.C. Hadjipanayis. Sm-Co and Pr-Fe-B Magnets with Increased Electrical Resistivity. Proceedings of 20th International Workshop on Rare Earth Permanent Magnets and their Applications, Sept. 8-10, 2008, Crete, Greece. http: /www. electronenergy. com/media/REM%20Workshop-High%20Resistivity%20PM. pdf.

DOI: 10.1063/1.3058641

Google Scholar

[10] U.S. Inan, R.A. Marshall: Numerical Electromagnetics the FDTD Method. (Cambridge University Press, 2011).

Google Scholar

[11] M.A. Lantz et al.: IEEE Transactions on Magnetics, 2015. DOI 10. 1109/TMAG. 2015. 2435893.

Google Scholar

[12] M.S. Walmer, M.H. Walmer, and C.H. Chen A new class of permanent-magnetic materials for high temperature applications in TWTs. Vacuum Electronics Conference 2000. DOI 10. 1109/OVE: EC. 2000. 847557.

DOI: 10.1109/ove:ec.2000.847557

Google Scholar

[13] P. Eklund, S. Sjökvist, S. Eriksson and M. Leijon A Complete Design of a Rare Earth Metal-Free Permanent Magnet Generator. Machines Vol. 2 (2014) pp.120-133; doi: 10. 3390/machines2020120.

DOI: 10.3390/machines2020120

Google Scholar

[14] J.D. Widmer, R. Martin, M. Kimiabeigi. Electric Vehicle Traction Motors Without Rare Earth Magnets. Sustainable Materials and Technologies Vol. 3 (2015), p.7.

DOI: 10.1016/j.susmat.2015.02.001

Google Scholar

[15] B. Nykvist, M. Nilsson: Nature Climate Change Vol. 5 (2015), p.329.

Google Scholar

[16] A. Honda, B. Fukuda, I. Ohyama, and Y. Mine: J. Mater. Eng. Vol. 12 (1990), p.41.

Google Scholar

[17] A. Sumper, A. Baggini: Electrical Energy Efficiency: Technologies and Applications. (John Wiley & Sons United Kingdom, 2012).

Google Scholar

[18] D. Liu, D. Hari, C. Vagg, L. Ash, S. Akehurst, C. J. Brace: Test and simulation of variable air gap concept on axial flux electric motor. In: VPPC 2013: The 9th IEEE Vehicle Power and Propulsion Conference, 2013-10-15 - 2013-10-18, Beijing. http: /dx. doi. org/10. 1109/ VPPC. 2013. 6671685.

DOI: 10.1109/vppc.2013.6671685

Google Scholar

[19] S.C. Oh, J. Kern, T. Bohn, A. Rousseau, and M. Pasquier Axial Flux Variable Gap Motor: Application in Vehicle Systems. 2002. http: /www. autonomie. net/docs/6%20-%20Papers/ CIL/axial_flux_variable_gap_motor. pdf.

DOI: 10.4271/2002-01-1088

Google Scholar

[20] P. Tenaud, A. Morel, F. Kools, J.M. Le Breton, L. Lechevallier: J. Alloys Compd. Vol. 370 (2004), p.331.

DOI: 10.1016/j.jallcom.2003.09.106

Google Scholar

[21] B.M. Kirrane, L.S. Nelson and R.S. Hoffman: Basic & Clinical Pharmacology & Toxicology Vol. 99 (2006), 358.

Google Scholar

[22] S.C. Chaudhary, A. Aggarwal, R. Avasthi: JIACM Vol 9 (2008), p.133.

Google Scholar

[23] F.E. Luborsky: Journal of Applied Physics Vol. 37 (1966), p.1091.

Google Scholar

[24] C. Yanar, J.M.K. Wiezorek, V. Radmilovic, W.A. Soffa: Metallurgical and Materials Transactions A Vol 33 ( 2002), p.2413.

Google Scholar

[25] K.W. Moon, K.W. Jeon, Min Kang, M.K. Kang. Y. Byun, J.B. Kim, H. Kim, J. Kim: IEEE Transactions on Magnetics Vol 50 (2014), p.2103804 DOI: 10. 1109/TMAG. 2014. 2329555.

Google Scholar

[26] J. Cui, J.P. Choi, G. Li, E. Polikarpov, J. Darsell, N. Overman, M. Olszta, D. Schreiber, M. Bowden, T. Droubay, M.J. Kramer, N.A. Zarkevich, L. L Wang, D.D. Johnson, M. Marinescu, I. Takeuchi, Q.Z. Huang, H. Wu, H. Reeve, N.V. Vuong, J.P. Liu: J. Phys. Condens. Matter Vol. 26 (2014).

DOI: 10.1088/0953-8984/26/6/064212

Google Scholar

[27] M.F. de Campos, F. A.S. Silva: Mat. Sci. Forum Vol. 820 (2015), p.199.

Google Scholar

[28] S.R. Janasi, M. Emura, F.J.G. Landgraf, D. Rodrigues: Journal of Magnetism and Magnetic Materials Vol 238 (2002), p.168.

Google Scholar