Part II - Microstructural and Physical of Calcium Phosphate Biomaterials Obtained from Natural Raw Materials

Article Preview

Abstract:

Calcium phosphate bioceramics obtained from raw materials are potential bone substitutes in orthopedic and dental applications. Calcium phosphates attained from calcareous shells using wet methods provide an interconnected microporous framework, shown to be promising and contribute to cell adhesion and proliferation. This study aimed to characterize three different calcium phosphate ratio compositions: (i)1.4, (ii)1.6 and (iii)1.7 molar, sintered for 2 hours at 1100°C and 1200°C. Scanning electron microscopy field effect [FEG] and confocal were used to assess microstructural characterization and Arthur method to determine open porosity. FEG and confocal analyses showed good grain coalescence, sinterability and well defined interfaces for all Ca/P molar at 1100°C and 1200°C. Open porosity and hydrostatic density exhibit better results when using Ca/P molar ratio (iii)1.7 at 1100°C. The results showed that open porosity is related to Ca/P ratio and by temperature. As the Ca/P increases so does the open porosity. Inversely occurs for temperature. As the temperature increases the porosity decreases and in parallel, the grain size increases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

147-152

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] OMS Organização Mundial da Saúde. Disponível em: http: /www. who. int/trade/glossary/story073. Acesso em 25 de fevereiro de (2015).

Google Scholar

[2] N.H.A. Camargo, P.F. Franczak, E. Gemelli, B.D. Costa, A.N. Moraes: Characterization of three calcium phosphate microporous granulated bioceramics. Advanced Materials Rechearch. doi: 10. 4028/www. scientific. net/AMR 936. 687, vol. 936, pp.687-694, (2014).

DOI: 10.4028/www.scientific.net/amr.936.687

Google Scholar

[3] S.V. Dorozhkin: Biphasic, triphasic and multiphasic calcium orthophosphates. Acta Biomater. doi: http: /dx. doi. org/10. 1016/j. actbio. 2011. 09. 003, vol. 8(3), pp.963-977, (2012).

DOI: 10.1016/j.actbio.2011.09.003

Google Scholar

[4] A.E. Tanur, N. Gunari, R.A.M. Sullan, C.J. Kavanagh, G.C. Walker: Journal of Estructural Biology. (2010), p.145.

Google Scholar

[5] U. Almeida: Análise e utilização de biomaterial confeccionado a partir das conchas de Crassostrea gigas em defeito periodontal em ratos. Mestrado (Dissertação). Curitiba, 2010. Universidade Positivo. (PR).

Google Scholar

[6] D.F. Silva: Síntese e caracterização de pós de fosfatos de cálcio a partir de conchas calcárias fossilizadas. Mestrado (Dissertação). Joinville, 2012. Universidade do Estado de Santa Catarina (UDESC/CCT). (SC).

DOI: 10.14393/19834071.2016.32970

Google Scholar

[7] A. Shavandi, A.E.A. Bekhit, A. Ali, Z. Sun: Materials Chemistry and Physics Vols. 149-150 (2015), p.607.

Google Scholar

[8] P. Kamalanathan, S. Ramesh, L.T. Bang, A. Niakan, C.Y. Tan, J. Purbolaksono, H. Chandran, W.D. Teng: Ceramics International Vol. 40 (2014), p.16349.

DOI: 10.1016/j.ceramint.2014.07.074

Google Scholar

[9] F.D. Silva, N.H.A. Camargo, G.M. L Dalmônico, P. Corrêa, M.S. Schneider, E. Gemelli: Materials Science Forum. doi: 10. 4028/www. scientific. net/MSF. 798-799. 449, Vols. 798-799 (2014), p.449.

DOI: 10.4028/www.scientific.net/msf.798-799.449

Google Scholar

[10] E.C.M. Pennings, W. Grellner: Journal American Ceramic. Society Vol. 72 (7) (1989), p.1268.

Google Scholar

[11] G.M.L. Dalmônico: Síntese e caracterização de fosfato de cálcio e hidroxiapatita: elaboração decomposições bifásicas HA/TCP-b para aplicações biomédicas. Mestrado (Dissertação). Joinville, 2011. Universidade do Estado de Santa Catarina (UDESC/CCT). (SC).

DOI: 10.14393/19834071.2016.32970

Google Scholar

[12] S.C. Wu, H.C. Hsu, S.K. Hsu, Y.C. Chang, W.F. Ho: Ceramics International. Doi: 10. 1016/j. ceramint. 2015. 05. 006, vol. 41, pp.10718-10728, (2015).

Google Scholar

[13] G.A. Shalabi, M.A. Van't Hof, J.A. Jansen, N.H.J. Creugers: J. Dent. Res. Vol. 85 (2006), p.496.

Google Scholar

[14] J.E. Davies: J. Dent. Educ. Vol. 67 (8) (2003), p.932.

Google Scholar

[15] M. Figueiredo, J. Henriques, G. Martins: Journal of Biomedical Materials Research Part B, Applied Biomaterials Vol. 92 (2) (2010), p.409.

Google Scholar

[16] N.H.A. Camargo, S.A. Delima, J.C.P. Souza, J.F. Deaguiar, E. Gemelli, M.M. Meier, F.G. Mittestädt: Key Engineering Materials Vols. 396-398 (2009), p.619.

Google Scholar