Part I - Sinterability of Calcium Phosphate Biomaterials Obtained from Fossilized Calcareous Shells for Biomedical Applications

Article Preview

Abstract:

Failures, infections, tumors are some bone defects causes. To repair these defects, studies show calcium phosphate bioceramics, which have been chemical and crystallographic similarity with the human bone and are biocompatible, favoring the interaction of these with vivo organisms, for bone repair. These biomaterials can be obtained from different synthesis methods. The powders, in this study, were obtained by wet method, using alternative raw material calcium carbonate from fossilized calcareous shells. The present paper aimed to elaborate and characterize different calcium phosphate ratio compositions: (i)1.4; (ii)1.6 and (iii)1.7 molar, sintered for 2 hours at 1100°C and 1200°C, further these powders were compressed in forms of cylinders. The characterization was realized by X-Ray Fluorescence (XFR), Fourier Transform Infrared Spectroscopy (FTIR) and X-ray diffractometry (XRD). The chemical and physical results shown small variations according to the Ca/P molar ratio and temperature increases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

171-175

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N.H.A. Camargo, P.F. Franczak E. Gemelli, B.D. Costa, A.N. Moraes: Advanced Materials Rechearch. Doi: 10. 4028/Www. Scientific. Net/Amr 936. 687, Vol. 936, P. 687-694, (2014).

DOI: 10.4028/www.scientific.net/amr.936.687

Google Scholar

[2] P.B. Roese: Impregnação de Peças de Osso Bovino Com Poli(Metilmetacrilato): Um Novo Material para Design de Produto. Dissertação de Mestrado Porto Alegre/Rs, (2009).

Google Scholar

[3] S.V. Dorozhkin, Biphasic, Triphasic And Multiphasic Calcium Orthophosphates. Acta Biomater. Doi: Http: /Dx. Doi. Org/10. 1016/J. Actbio. 2011. 09. 003, Vol. 8(3), P. 963-977, (2012).

DOI: 10.1016/j.actbio.2011.09.003

Google Scholar

[4] J.Y. Reginster: BMJ Vol. 330 (2005), p.859.

Google Scholar

[5] F.D. Silva, N.H.A. Camargo, G.M.L. Dalmônico, P. Corrêa, M.S. Schneider, E. Gemelli:. Materials Science Forum. Doi: 10. 4028/Www. Scientific. Net/Msf. 798-799. 449, Vol. 798-799, P. 449-453, (2014).

DOI: 10.4028/www.scientific.net/msf.798-799.449

Google Scholar

[6] D.F. Silva, Síntese e Caracterização de Pós de Fosfatos de Cálcio a Partir de Conchas Calcárias Fossilizadas. Mestrado (Dissertação). Joinville, 2012. Universidade do Estado de Santa Catarina (UDESC/CCT). (SC).

DOI: 10.14393/19834071.2016.32970

Google Scholar

[7] A. Behnamghader, N. Bagheri, B. Raissi, F. Moztarzadeh: J Mater Sci: Mater Med. Vol. 19 (2008), p.197.

Google Scholar

[8] P. Corrêa: Síntese e Caracterização de Nanocompósitos Ha/Al2O3-Α Sol-Gel Para Aplicações na Reconstrução Óssea Mestrado (Dissertação). Joinville, 2013. Universidade do Estado de Santa Catarina (UDESC/CCT). (SC).

DOI: 10.14349/sumneg/2018.v9.n19.a4

Google Scholar

[9] S. Raynaud et al.: Biomaterials Vol. 23 (2002), p.1005.

Google Scholar

[10] X.V. Bui: ¨Elaboration De Biomatériaux Verressubstances Actives (Zolédronatechitosane). Caractérisations Physico-Chimiques. ¨ Expérimentations ¨In Vitro. These De Docteur, Ecole Doctorale Sciences De La Matière, Université De Rennes, (2011).

Google Scholar

[11] M.S. Laranjeira: Journal of Biomedical Materials Research Part A Vol. 95 (3) (2010), p.891.

Google Scholar

[12] D. Floriano-Silva et al: 58º Congresso Brasileiro de Cerâmica (CBC). Bento Gonçalves 18 a 21 de Maio, 2014. Proceeding.. Bento Gonçalves, 2014. (RS).

Google Scholar

[13] A.E. Tanur et al: Journal of Estructural Biology (2010), p.145.

Google Scholar

[14] P. Kamalanathan: Ceramics International Vol. 40 (2014), p.16349.

Google Scholar

[15] J. Trinkunaite-Felsen: Advanced Powder Technology. (2015).

Google Scholar