Rheological Characterization of Aqueous ZrO2-Suspension for Additive Manufacturing

Article Preview

Abstract:

Water-based suspensions from commercial Tetragonal stabilized zirconia (3Y-TZP) were produced and characterized with different contents of solids and two different dispersants. According to zeta potential measurements, 3Y-TZP particles showed basic surface characteristics and IEP of around 9 when in aqueous media. The critical volume fraction of solids was about 79.6 wt%, which hindered the processing of more concentrated slurries. Rheological measurements confirmed that well dispersed slurries could be obtained with solid content as high as 79.6 wt.%. The results showed that Triton X-114 was an effective dispersant for preparing well stabilized 3Y-TZP suspensions for the layer-wise slurry deposition process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

195-199

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.G. Horn: J. Am. Ceram. Soc. Vol. 73 (1990), p.1117.

Google Scholar

[2] C. Piconi, G. Maccauro, F. Muratori, E. Branch del Prever: J. Appl. Biomater. Biomech. Vol. 1 (2003), p.19.

Google Scholar

[3] M. Hisbergues, S. Vendeville, P. Vendeville: J. Biomed. Mater. Res. Part B Appl. Biomater. Vol. 88 (2009), p.519.

Google Scholar

[4] T. Chartier, C. Chaput, F. Doreau, M. Loiseau: J. Mater. Sci. Vol. 37 (2002), p.3141.

Google Scholar

[5] N.R.F.A. Silva, L. Witek, P.G. Coelho, V.P. Thomson, E.D. Rekow, J. Smay: J. Prosthodont. Vol. 93 (6) (2011), p.20.

Google Scholar

[6] J. Wang, L. L. Shaw, T.B. Cameron: J. Am. Ceram. Soc. 89 (1) (2005), 346.

Google Scholar

[7] S. Michna, W. Wu, J. A. Lewis: Biomaterials Vol. 26 (2005), p.5632.

Google Scholar

[8] J.A. Lewis, J.A. Smay, J. Stuecker, J. Cesarano III: J. Am. Ceram. Soc. Vol. 89(12) (2006), p.3599.

Google Scholar

[9] D.L. Bourell, H.L. Marcus, J.W. Barlow, J.J. Beamann: Int. J. Powder Metall. Vol. 28 (1992), p.369.

Google Scholar

[10] C. Griffin, J. Danfenbach, S. McMillin: Bull. Am. Ceram. Soc. Vol. 73 (1994), p.109.

Google Scholar

[11] E.M. Sachs, M.J. Cima, P. Williams, D. Brancazio, J. Cornie: J. Eng. Ind. Vol. 114 (1992), p.481.

Google Scholar

[12] C. Bergmann et al.: J. Eur. Ceram. Soc. Vol. 30 (12) (2010), p.2563.

Google Scholar

[13] X. Zhao, J.R.G. Evans, M. J Edirisinghe, J.H. Song: J. Mater. Sci. Vol. 37 (2002), p. (1987).

Google Scholar

[14] B. Derby, N. Reis: MRS Bull. Vol. 28 (2003), p.815.

Google Scholar

[15] M. Lejeune, T. Chartier, C. Dossou-Yovo, R. Noguera: J. Eur. Ceram. Soc. Vol. 29 (2009), p.905.

Google Scholar

[16] B. Cappi, J. Ebert, R. Telle: J. Am. Ceram. Soc. Vol. 94 (2011), p.111.

Google Scholar

[17] J.S. Reed: Principles of Ceramic Processing. (Willey New York, 1995).

Google Scholar

[18] X. Tian, T. Mühler, C. Gomes, J. Günster, J.G. Heinrich: J. Ceram. Sci. Tech. Vol. 2 (2011), p.1.

Google Scholar

[19] A. Gahler, J. G. Heinrich, J. Günster: J. Am Ceram. Soc. Vol. 89 (2006), p.3076.

Google Scholar

[20] J. Zhang, F. Ye, J. Sun, D. Jiang, M. Iwasa: Colloids and Surfaces A: Physicochem. Eng. Aspects Vol. 254 (2005), p.199.

Google Scholar

[21] X. Tian, B. Sun, J.G. Heinrich, D. Li: Materials Science and Engineering. A Vol. 527 (2010), p.1695.

Google Scholar

[22] F.A. Morrison: Understanding Rheology. (Oxford University Press New York, 2001).

Google Scholar

[23] D.R. Dinger: Rheology for Ceramists. (Morris Publishing Kearney, 2002).

Google Scholar

[24] E. López-López, C. Baudín, R. Moreno: J. Eur. Ceram. Soc. Vol. 29 (2009), p.3219.

Google Scholar