The Mechanical Properties of Alkaline Treated Pineapple Leaf Fibre to Reinforce Tapioca Based Bioplastic Resin Composite

Article Preview

Abstract:

The depletion crude oil has urged many researchers to find a suitable material to replace the current synthetic polymer products. Furthermore the shortage of landfill and ingestion of plastic by animals has to be taken in consideration in finding a material that can be easily biodegraded by enzyme or bacteria. In this study both fibre and matrix are from plant fibre, which makes the product highly compostable after the intended life usage. The fibre surface is modified with various alkaline concentrations before mixing with matrix through extrusion technique. The product of the extrusion is pelletized and hot compressed into specimen size according to ASTM. The specimen was tested for mechanical properties and the result shows the alkaline concentration affects the strength of the composite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

66-70

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O. Faruk, A. K. Bledzki, H. -P. Fink, and M. Sain, Biocomposites reinforced with natural fibers: 2000–2010, Progress in Polymer Science, vol. 37, pp.1552-1596, (2012).

DOI: 10.1016/j.progpolymsci.2012.04.003

Google Scholar

[2] K. G. Satyanarayana, G. G. C. Arizaga, and F. Wypych, Biodegradable composites based on lignocellulosic fibers—An overview, Progress in Polymer Science, vol. 34, pp.982-1021, (2009).

DOI: 10.1016/j.progpolymsci.2008.12.002

Google Scholar

[3] M. Asim, K. Abdan, M. Jawaid, M. Nasir, Z. Dashtizadeh, M. R. Ishak, et al., A Review on Pineapple Leaves Fibre and Its Composites, International Journal of Polymer Science, vol. 2015, pp.1-16, (2015).

DOI: 10.1155/2015/950567

Google Scholar

[4] D. Liu, J. Song, D. P. Anderson, P. R. Chang, and Y. Hua, Bamboo fiber and its reinforced composites: structure and properties, Cellulose, vol. 19, pp.1449-1480, (2012).

DOI: 10.1007/s10570-012-9741-1

Google Scholar

[5] R. Senawi, S. M. Alauddin, R. M. Saleh, and M. I. Shueb, Polylactic Acid/Empty Fruit Bunch Fiber Biocomposite: Influence of Alkaline and Silane Treatment on the Mechanical Properties, International Journal of Bioscience, Biochemistry and Bioinformatics, pp.59-61, (2013).

DOI: 10.7763/ijbbb.2013.v3.164

Google Scholar

[6] J. G. Akpa and K. K. Dagde, Modification of Cassava Starch for Industrial Uses, International Journal of Engineering and Technology, vol. 2, (2012).

Google Scholar

[7] H. T. Rett, Thermal and microscopic analysis of biodegradable laminates madefrom cassava flour, sorbitol and poly (butylene adipate-coterephthalate) PBAT, Acta Scientiarum. Technology, vol. 35, pp.765-770, (2013).

DOI: 10.4025/actascitechnol.v35i4.13183

Google Scholar

[8] I. M. De Rosa, C. Santulli, and F. Sarasini, Mechanical and thermal characterization of epoxy composites reinforced with random and quasi-unidirectional untreated Phormium tenax leaf fibers, Materials & Design, vol. 31, pp.2397-2405, (2010).

DOI: 10.1016/j.matdes.2009.11.059

Google Scholar

[9] N. Kengkhetkit and T. Amornsakchai, A new approach to "Greening" plastic composites using pineapple leaf waste for performance and cost effectiveness, Materials & Design, vol. 55, pp.292-299, 3/ (2014).

DOI: 10.1016/j.matdes.2013.10.005

Google Scholar

[10] M. S. Alwani, H. P. S. A. Khalil, O. Sulaiman, M. N. Islam, and R. Dungani, An Approach to Using Agricultural Waste Fibres in Biocomposites Application: Thermogravimetric Analysis and Activation Energy Study, Bioresources, vol. 9, pp.218-230, (2014).

DOI: 10.15376/biores.9.1.218-230

Google Scholar

[11] S. M. S. J. P. Siregar , M. Z. A. Rahman and H. M. D. K. Zaman, The effect of alkali treatment on the mechanical properties of short pineapple leaffibre (PALF) reinforced high impact polystyrene (HIPS) composites, ournal of Food, Agriculture & Environment vol. Vol. 8, p.5, (2010).

DOI: 10.1177/096369350901800104

Google Scholar

[12] Y. A. El-Shekeil, S. M. Sapuan, A. Khalina, E. S. Zainudin, and O. M. Al-Shuja'a, Effect of alkali treatment on mechanical and thermal properties of Kenaf fiber-reinforced thermoplastic polyurethane composite, Journal of Thermal Analysis and Calorimetry, vol. 109, pp.1435-1443, (2012).

DOI: 10.1007/s10973-012-2258-x

Google Scholar

[13] X. Li, L. G. Tabil, and S. Panigrahi, Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review, Journal of Polymers and the Environment, vol. 15, pp.25-33, (2007).

DOI: 10.1007/s10924-006-0042-3

Google Scholar

[14] S. Ikhlef, S. Nekkaa, M. Guessoum, and N. Haddaoui, Effects of Alkaline Treatment on the Mechanical and Rheological Properties of Low-Density Polyethylene/Spartium junceum Flour Composites, ISRN Polymer Science, vol. 2012, pp.1-7, (2012).

DOI: 10.5402/2012/965101

Google Scholar

[15] Y. Du, N. Yan, and M. T. Kortschot, A simplified fabrication process for biofiber-reinforced polymer composites for automotive interior trim applications, Journal of Materials Science, vol. 49, pp.2630-2639, (2013).

DOI: 10.1007/s10853-013-7965-6

Google Scholar