Influence of Alkali Treatment and Nanoclay Content on the Properties of Rice Husk Filled Polyester Composites

Article Preview

Abstract:

The effect of alkali treatment and nanoclay addition on the mechanical properties and water absorption behavior of rice husk particle (RHP) reinforced unsaturated polyester (UP) composites was investigated. Thermogravimetric analysis (TGA) indicated that the alkali treatment removed most of the hemicellulose and impurities from the RHP with the tensile strength, tensile modulus, flexural strength and flexural modulus of the resulting composites being improved by alkali treatment. The results indicated that the 5% sodium hydroxide concentration had the optimum performance on mechanical strength and water absorption resistance. Furthermore, the influence of nanoclay addition (1, 3 and 5 wt%) on the properties of optimum alkali treated RHP-UP composites was investigated with the lowest content (1 wt%) of nanoclay showing the highest mechanical performance. However, further addition of nanoclay improved the moisture absorption resistance of the composites. Good interface bonding between the filler and matrix was observed from scanning electron micrographs for the optimum RHP alkali treated and nanoclay dispersed RHP-UP composites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-100

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. S. Ndazi, et al., Chemical and physical modifications of rice husks for use as composite panels. Composites Part A: Applied Science and Manufacturing, 2007. 38: pp.925-935.

DOI: 10.1016/j.compositesa.2006.07.004

Google Scholar

[2] O. Faruk, , et al., Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 2012. 37(11): pp.1552-1596.

DOI: 10.1016/j.progpolymsci.2012.04.003

Google Scholar

[3] M. W. Dewan, et al., Thermomechanical properties of alkali treated jute-polyester/nanoclay biocomposites fabricated by VARTM process. Journal of Applied Polymer Science, 2013. 128(6): pp.4110-4123.

DOI: 10.1002/app.38641

Google Scholar

[4] A. Nourbakhsh, F.F. Baghlani, and A. Ashori, Nano-SiO2 filled rice husk/polypropylene composites: Physico-mechanical properties. Industrial Crops and Products, 2011. 33(1): pp.183-187.

DOI: 10.1016/j.indcrop.2010.10.010

Google Scholar

[5] J. S. Lim, et al., A review on utilisation of biomass from rice industry as a source of renewable energy. Renewable and Sustainable Energy Reviews, 2012. 16(5): pp.3084-3094.

DOI: 10.1016/j.rser.2012.02.051

Google Scholar

[6] S. L. Rosa, S. B. Nachtigall, and C. Ferreira, Thermal and dynamic-mechanical characterization of rice-husk filled polypropylene composites. Macromolecular Research, 2009. 17(1): pp.8-13.

DOI: 10.1007/bf03218594

Google Scholar

[7] S. D. Genieva, , S. C. Turmanova, and L.T. Vlaev, Utilization of Rice Husks and the Products of Its Thermal Degradation as Fillers in Polymer Composites, in Cellulose Fibers: Bio- and Nano-Polymer Composites, S. Kalia, B.S. Kaith, and I. Kaur, Editors. 2011, Springer Berlin Heidelberg. pp.345-375.

DOI: 10.1007/978-3-642-17370-7_13

Google Scholar

[8] K. Majeed, et al., Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Materials & Design, 2013. 46(0): pp.391-410.

DOI: 10.1016/j.matdes.2012.10.044

Google Scholar

[9] M. Khalid, , et al., Comparative study of polypropylene composites reinforced with oil palm empty fruit bunch fiber and oil palm derived cellulose. Materials & Design, 2008. 29(1): pp.173-178.

DOI: 10.1016/j.matdes.2006.11.002

Google Scholar

[10] O. Nabinejad, et al, Mechanical and thermal characterization of polyester composite containing treated wood flour from Palm oil biomass, Polymer Composites, In press (DOI: 10. 1002/pc. 24052) (2016).

DOI: 10.1002/pc.24052

Google Scholar

[11] I. A. T. Razera, and E. Fr Mohanty ollini, Composites based on jute fibers and phenolic matrices: Properties of fibers and composites. Journal of Applied Polymer Science, 2004. 91(2): pp.1077-1085.

DOI: 10.1002/app.13224

Google Scholar

[12] H. Alamri, and I.M. Low, Effect of water absorption on the mechanical properties of nanoclay filled recycled cellulose fibre reinforced epoxy hybrid nanocomposites. Composites Part A: Applied Science and Manufacturing, 2013. 44(0): pp.23-31.

DOI: 10.1016/j.compositesa.2012.08.026

Google Scholar

[13] T. H. Hsieh, et al., The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles. Journal of Materials Science, 2010. 45(5): pp.1193-1210.

DOI: 10.1007/s10853-009-4064-9

Google Scholar

[14] S. Takahashi, et al., Gas barrier properties of butyl rubber/vermiculite nanocomposite coatings. Polymer, 2006. 47(9): pp.3083-3093.

DOI: 10.1016/j.polymer.2006.02.077

Google Scholar

[15] B. Kord, Effect of Nanoparticles Loading on Properties of Polymeric Composite Based on Hemp Fiber/Polypropylene. Journal of Thermoplastic Composite Materials, 2012. 25(7): pp.793-806.

DOI: 10.1177/0892705711412815

Google Scholar

[16] A. Chavooshi, et al., MDF dust/PP composites reinforced with nanoclay: Morphology, long-term physical properties and withdrawal strength of fasteners in dry and saturated conditions. Construction and Building Materials, 2014. 52(0): pp.324-330.

DOI: 10.1016/j.conbuildmat.2013.11.045

Google Scholar

[17] A. R. Martin, et al., Studies on the thermal properties of sisal fiber and its constituents. Thermochimica Acta, 2010. 506(1-2): pp.14-19.

DOI: 10.1016/j.tca.2010.04.008

Google Scholar

[18] O. Nabinejad, et al., Effect of oil palm shell powder on the mechanical performance and thermal stability of polyester composites. Materials & Design, 2015. 65: pp.823-830.

DOI: 10.1016/j.matdes.2014.09.080

Google Scholar

[19] O. Nabinejad, et al., Determination of filler content for natural filler polymer composite by thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 2015: pp.1-7.

DOI: 10.1007/s10973-015-4681-2

Google Scholar

[20] P. M. Stefani, , et al., Thermogravimetric analysis of composites obtained from sintering of rice husk-scrap tire mixtures. Journal of Thermal Analysis and Calorimetry, 2005. 81(2): pp.315-320.

DOI: 10.1007/s10973-005-0785-4

Google Scholar

[21] S. Mishra, et al., Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites. Composites Science and Technology, 2003. 63(10): pp.1377-1385.

DOI: 10.1016/s0266-3538(03)00084-8

Google Scholar

[22] H. D. Rozman, et al., Tensile properties of kenaf/unsaturated polyester composites filled with a montmorillonite filler. Journal of Applied Polymer Science, 2011. 119(5): pp.2549-2553.

DOI: 10.1002/app.32096

Google Scholar

[23] B. Kord, Nanofiller reinforcement effects on the thermal, dynamic mechanical, and morphological behavior of hdpe/rice husk flour composites. BioResources, 2011. 6(2): pp.1351-1358.

DOI: 10.15376/biores.6.2.1351-1358

Google Scholar

[24] Y. Karaduman, and L. Onal, Water absorption behavior of carpet waste jute-reinforced polymer composites. Journal of Composite Materials, 2010 45(15): pp.1559-1571.

DOI: 10.1177/0021998310385021

Google Scholar

[25] A. D. Drozdov, et al., Model for anomalous moisture diffusion through a polymer–clay nanocomposite. Journal of Polymer Science Part B: Polymer Physics, 2003. 41(5): pp.476-492.

DOI: 10.1002/polb.10393

Google Scholar