Enhancement of the Mechanical Properties of PEBAX Graphene Nanocomposite Using Supercritical Fluid Assisted Extrusion Polymer Processing Technique

Article Preview

Abstract:

Medical tubing used in minimally invasive devices presents a number of design considerations depending on the material used, design requirements (such as sufficient stiffness, flexibility and biocompatibility) and processing conditions. Currently, manufacturing industries adopt co-extrusion systems to meet design specifications, by using multilayer configuration leading to higher cost per device and increased complexity. This paper investigates the mechanical performance of nanocomposites using supercritical carbon dioxide assisted polymer processing technique. The use of innovative medical compounds such as PEBAX graphene nanocomposites have resulted in measurable improvements in mechanical properties. This study also presents the effect of supercritical carbon dioxide on the mechanical and physical properties of the polymer matrix. The mechanical properties have been investigated using dynamic mechanical analysis (DMA) and mechanical tensile test, where sufficient reinforcement was observed depending on the composition of graphene within PEBAX matrix. ATR-FTIR was used to further analyze the effect of supercritical carbon dioxide and interactions within the polymer composite matrix.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-84

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Kamal, S. -Y. Park, J. -H. Park, Y. -W. Chang, Structural evolution of poly(ether-b-amide12) elastomers during the uniaxial stretching: An in situ wide-angle X-ray scattering study, Macromol. Res., 20 (2012) 725-731.

DOI: 10.1007/s13233-012-0109-z

Google Scholar

[2] J.P. Sheth, J. Xu, G.L. Wilkes, Solid state structure–property behavior of semicrystalline poly(ether-block-amide) PEBAX® thermoplastic elastomers, Polymer, 44 (2003) 743-756.

DOI: 10.1016/s0032-3861(02)00798-x

Google Scholar

[3] P. Bernardo, J.C. Jansen, F. Bazzarelli, F. Tasselli, A. Fuoco, K. Friess, P. Izák, V. Jarmarová, M. Kačírková, G. Clarizia, Gas transport properties of Pebax®/room temperature ionic liquid gel membranes, Separation and Purification Technology, 97 (2012).

DOI: 10.1016/j.seppur.2012.02.041

Google Scholar

[4] V. Bondar, B. Freeman, I. Pinnau, Gas sorption and characterization of poly (ether‐b‐amide) segmented block copolymers, Journal of Polymer Science Part B: Polymer Physics, 37 (1999) 2463-2475.

DOI: 10.1002/(sici)1099-0488(19990901)37:17<2463::aid-polb18>3.0.co;2-h

Google Scholar

[5] S. Armstrong, B. Freeman, A. Hiltner, E. Baer, Gas permeability of melt-processed poly(ether block amide) copolymers and the effects of orientation, Polymer, 53 (2012) 1383-1392.

DOI: 10.1016/j.polymer.2012.01.037

Google Scholar

[6] A.M. Ádámné, K. Belina, M. Pósa, B. Kecskés, Investigation of mechanical and thermal properties of oriented polyamid copolymer, Int J Mater Form, 1 (2008) 587-590.

DOI: 10.1007/s12289-008-0324-5

Google Scholar

[7] K.A.A. Halim, J.E. Kennedy, J.B. Farrell, Preparation and characterisation of polyether-block-amide/montmorillonite (MMT) nanocomposites for use in angioplasty balloon applications, 1st International Malaysia Ireland Joint Symposium, (2011).

DOI: 10.1016/j.matchemphys.2013.09.007

Google Scholar

[8] H. Meng, G. Li, A review of stimuli-responsive shape memory polymer composites, Polymer, 54 (2013) 2199-2221.

DOI: 10.1016/j.polymer.2013.02.023

Google Scholar

[9] Y.C. Jung, H.J. Yoo, Y.A. Kim, J.W. Cho, M. Endo, Electroactive shape memory performance of polyurethane composite having homogeneously dispersed and covalently crosslinked carbon nanotubes, Carbon, 48 (2010) 1598-1603.

DOI: 10.1016/j.carbon.2009.12.058

Google Scholar

[10] Y.C. Jung, J.H. Kim, T. Hayashi, Y.A. Kim, M. Endo, M. Terrones, M.S. Dresselhaus, Fabrication of Transparent, Tough, and Conductive Shape‐Memory Polyurethane Films by Incorporating a Small Amount of High‐Quality Graphene, Macromolecular rapid communications, 33 (2012).

DOI: 10.1002/marc.201100674

Google Scholar

[11] G. Xing, H. Guo, X. Zhang, T.C. Sum, C.H.A. Huan, The physics of ultrafast saturable absorption in graphene, Optics express, 18 (2010) 4564-4573.

DOI: 10.1364/oe.18.004564

Google Scholar

[12] D.R. Dreyer, R.S. Ruoff, C.W. Bielawski, From conception to realization: an historial account of graphene and some perspectives for its future, Angewandte Chemie International Edition, 49 (2010) 9336-9344.

DOI: 10.1002/anie.201003024

Google Scholar

[13] S. Kazarian, Polymer processing with supercritical fluids, POLYMER SCIENCE SERIES CC/C OF VYSOKOMOLEKULIARNYE SOEDINENIIA, 42 (2000) 78-101.

Google Scholar

[14] F. Cansell, C. Aymonier, A. Loppinet-Serani, Review on materials science and supercritical fluids, Current Opinion in Solid State and Materials Science, 7 (2003) 331-340.

DOI: 10.1016/j.cossms.2004.01.003

Google Scholar

[15] J.R. Combes, S. Kumar, L.S. Smith, H.K. Mahabadi, P.G. Odell, Supercritical fluid processes, Google Patents, (2000).

Google Scholar

[16] A.I. Cooper, Polymer synthesis and processing using supercritical carbon dioxide, Journal of Materials Chemistry, 10 (2000) 207-234.

Google Scholar

[17] V. Goodship, E. Ogur, Polymer Processing with Supercritical Fluids, Smithers Rapra, Shrewsbury, GBR, (2004).

Google Scholar

[18] S.R. Marre, Y.; Aymonier, C, Supercritical microfluidics: Opportunities in flow-through chemistry and materials science, . J. Supercrit. Fluids, (2011).

DOI: 10.1016/j.supflu.2011.11.029

Google Scholar

[19] S.P. Nalawade, F. Picchioni, L.P.B.M. Janssen, Supercritical carbon dioxide as a green solvent for processing polymer melts: Processing aspects and applications, Progress in Polymer Science, 31 (2006) 19-43.

DOI: 10.1016/j.progpolymsci.2005.08.002

Google Scholar

[20] O.S. Fleming, S.G. Kazarian, Polymer Processing with Supercritical Fluids, Supercritical Carbon Dioxide, Wiley-VCH Verlag GmbH & Co. KGaA2006, pp.205-238.

DOI: 10.1002/3527606726.ch10

Google Scholar

[21] G.K. Serhatkulu, C. Dilek, E. Gulari, Supercritical CO2 intercalation of layered silicates, J. Supercrit. Fluids, 39 (2006) 264-270.

DOI: 10.1016/j.supflu.2006.07.028

Google Scholar

[22] J.W. Tom, P.G. Debenedetti, Particle formation with supercritical fluids—a review, Journal of Aerosol Science, 22 (1991) 555-584.

DOI: 10.1016/0021-8502(91)90013-8

Google Scholar

[23] M. Sauceau, J. Fages, A. Common, C. Nikitine, E. Rodier, New challenges in polymer foaming: a review of extrusion processes assisted by supercritical carbon dioxide, Progress in Polymer Science, 36 (2011) 749-766.

DOI: 10.1016/j.progpolymsci.2010.12.004

Google Scholar

[24] J.G. Lyons, M. Hallinan, J.E. Kennedy, D.M. Devine, L.M. Geever, P. Blackie, C.L. Higginbotham, Preparation of monolithic matrices for oral drug delivery using a supercritical fluid assisted hot melt extrusion process, International Journal of Pharmaceutics, 329 (2007).

DOI: 10.1016/j.ijpharm.2006.08.028

Google Scholar

[25] J.H. Kim, S.Y. Ha, Y.M. Lee, Gas permeation of poly(amide-6-b-ethylene oxide) copolymer, Journal of Membrane Science, 190 (2001) 179-193.

DOI: 10.1016/s0376-7388(01)00444-6

Google Scholar

[26] E.J. Beckman, Supercritical and near-critical CO 2 in green chemical synthesis and processing, J. Supercrit. Fluids, 28 (2004) 121-191.

DOI: 10.1016/s0896-8446(03)00029-9

Google Scholar

[27] S.G. Kazarian, M.F. Vincent, F.V. Bright, C.L. Liotta, C.A. Eckert, Specific Intermolecular Interaction of Carbon Dioxide with Polymers, Journal of the American Chemical Society, 118 (1996) 1729-1736.

DOI: 10.1021/ja950416q

Google Scholar

[28] J. Vlachopoulos, D. Strutt, Polymer processing, Materials science and technology, 19 (2003) 1161-1169.

DOI: 10.1179/026708303225004738

Google Scholar

[29] A. Poudel, A. Coffey, J. Kennedy, S. Lyons, K. Thomas, P. Walsh, Dielectric Polarization Enhancement of Thermoplastic Elastomers for Sensing and Energy Harvesting Applications, International Journal of Materials, Mechanics and Manufacturing 4(2016).

DOI: 10.18178/ijmmm.2016.4.4.263

Google Scholar

[30] K. Shimizu, T. Yasuda, H. Saito, Perpendicular Orientation of Cylindrical Microdomains in Extruded Triblock Copolymer, Macromolecules, 43 (2010) 2088-(2091).

DOI: 10.1021/ma9016373

Google Scholar

[31] S. Ghose, K.A. Watson, D.C. Working, J.W. Connell, J. Smith, Y. Sun, Thermal conductivity of ethylene vinyl acetate copolymer/nanofiller blends, Composites Science and Technology, 68 (2008) 1843-1853.

DOI: 10.1016/j.compscitech.2008.01.016

Google Scholar

[32] D.V. Rosato, M.G. Rosato, Injection molding handbook, Springer Science & Business Media2012.

Google Scholar

[33] T. McNally, P. Pötschke, Polymer-carbon nanotube composites: Preparation, properties and applications, Elsevier2011.

Google Scholar

[34] A. Tena, S. Shishatskiy, V. Filiz, Poly(ether-amide) vs. poly(ether-imide) copolymers for post-combustion membrane separation processes, RSC Advances, 5 (2015) 22310-22318.

DOI: 10.1039/c5ra01328c

Google Scholar

[35] M. Colonna, M. Nicotra, M. Moncalero, Materials, designs and standards used in ski-boots for alpine skiing, Sports, 1 (2013) 78-113.

DOI: 10.3390/sports1040078

Google Scholar