Preparation and Properties of Thermoplastic Starch/Bentonite Nanocomposites

Article Preview

Abstract:

Thermoplastic starch (TPS)/bentonite nanocomposites containing up to 7.5 wt.% bentonite were prepared. Maize starch was plasticized with glycerol and water, in presence or absence of bentonite, in a twin-screw extruder. Mechanical, morphological and thermal properties of the TPS/bentonite nanocomposites were determined and discussed. Scanning electron microscopic (SEM) images revealed a good dispersion of bentonite particles with some remaining agglomerates in the range of 0.1 to 1.5 μm. According to the tensile test results the tensile strength and Young’s modulus increased significantly with increasing bentonite content, however, at cost of elongation. Thermogravimetric analysis (TGA) showed that the presence of bentonite exerted little to no effect on the thermal stability of TPS.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

129-134

Citation:

Online since:

February 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F.J. Rodriguez-Gonzalez, B.A. Ramsay, B.D. Favis, Rheological and thermal properties of thermoplastic starch with high glycerol content, Carbohydrate Polymers 58 (2004) 139-147.

DOI: 10.1016/j.carbpol.2004.06.002

Google Scholar

[2] Jeroen J.G. van Soest, Johannes F.G. Vliegenthart, Crystallinity in starch plastics: consequences for material properties, T. in Bitech. 15 (1997) 208-213.

DOI: 10.1016/s0167-7799(97)01021-4

Google Scholar

[3] A.M. Nafchi, M. Moradpour, M. Saeidi, A.K. Alias, Thermoplastic starches: Properties, challenges, and prospects, Starch 65 (2013) 61-72.

DOI: 10.1002/star.201200201

Google Scholar

[4] H. Liu, F. Xie, L. Yu, L. Chen, L. Li, Thermal processing of starch-based polymers, Prog. Polym. Sci. 34, (2009) 1348-1368.

Google Scholar

[5] F. Xie, E. Pollet, P.J. Halley, L. Avérous, Starch-based nano-biocomposites, Prog. Polym. Sci. 38 (2013) 1590-1628.

DOI: 10.1016/j.progpolymsci.2013.05.002

Google Scholar

[6] L. Lendvai, J. Karger-Kocsis, Á. Kmetty, S.X. Drakopoulos, Production and characterization of microfibrillated cellulose reinforced thermoplastic starch composites, J. Appl. Polym. Sci. 133 (2016) 42397.

DOI: 10.1002/app.42397

Google Scholar

[7] P. Müller, É. Kapin, E. Fekete, Effects of preparation methods on the structure and mechanical properties of wet conditioned starch/montmorillonite nanocomposite film, Carbohydrate Polymers 113 (2014) 569-576.

DOI: 10.1016/j.carbpol.2014.07.054

Google Scholar

[8] J. Karger-Kocsis, On the toughness of nanomodified, polymers and their traditional polymer composites, in: J. Karger-Kocsis. S. Fakirov (Eds. ), Nano- and Micro- Mechanics of Polymer Blends and Composites, Carl Hanser Verlag GmbH & Co., Munich, 2009, pp.425-470.

DOI: 10.3139/9783446430129.012

Google Scholar

[9] J. Karger-Kocsis, Á. Kmetty, L. Lendvai, S.X. Drakopoulos, T. Bárány, Water-Assisted Production of Thermoplastic Nanocomposites: A Review, Materials 8 (2015) 72-95.

DOI: 10.3390/ma8010072

Google Scholar

[10] V.P. Cyras, L.B. Manfredi, M. -T. Ton-That, A. Vázquez, Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite film, Carbohydrate Polymers 73 (2008) 55-63.

DOI: 10.1016/j.carbpol.2007.11.014

Google Scholar

[11] S. Paszkiewicz, Enhanced thermal and mechanical properties of poly(trimethylene terephthalate-block-poly(tetramethylene oxide) segmented copolymer based hybrid nanocomposites prepared by in situ polymerization via synergy effect between SWCNTs and graphene nanoplatelets, Express Polym. Lett. 9 (2015).

DOI: 10.3144/expresspolymlett.2015.49

Google Scholar