[1]
A. Züttel, Materials for hydrogen storage, Materials Today 6 (2003) 24–33.
Google Scholar
[2]
M. Felderhoff, C. Weidenthaler, R. von Helmot, U. Eberle, Hydrogen storage the remaining scientific and technological challenges, Phys. Chem. Chem. Phys. 9 (2007) 2643-2653.
DOI: 10.1039/b701563c
Google Scholar
[3]
E.C.E. Rönnebro, E.H. Majzoub, Recent advances in metal hydrides for clean energy application, MRS Bull. 38 (2013) 452-458.
DOI: 10.1557/mrs.2013.132
Google Scholar
[4]
L. Schlapbach, A. Züttel, Hydrogen-storage materials for mobile applications, Nature 414 (2001) 353-358.
DOI: 10.1038/35104634
Google Scholar
[5]
B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Metal hydride materials for solid hydrogen storage, Int. J. Hydrogen Energy 32 (2007) 1121–1140.
DOI: 10.1016/j.ijhydene.2006.11.022
Google Scholar
[6]
R.A. Varin, T. Czujko, Z.S. Wronski, Nanomaterials for Solid State Hydrogen Storage, Springer Science, New York, (2009).
Google Scholar
[7]
I.P. Jain, C. Lal, A. Jain, Hydrogen storage in Mg: A most promising material, Int. J. Hydrogen Energy 35 (2010) 5133–5144.
DOI: 10.1016/j.ijhydene.2009.08.088
Google Scholar
[8]
D. Fátay, Á. Révész, T. Spassov, Particle size and catalytic effect on the dehydriding of MgH2, J. Alloys Compd. 399 (2005) 237-241.
DOI: 10.1016/j.jallcom.2005.02.043
Google Scholar
[9]
W. Oelerich, T. Klassen, R. Bormann, Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials, J. Alloys Compd. 315 (2011) 237-242.
DOI: 10.1016/s0925-8388(00)01284-6
Google Scholar
[10]
M. Danaie, D. Mitlin, TEM analysis and sorption properties of high-energy milled MgH2 powders, J. Alloys Compd. 476 (2008) 590-598.
DOI: 10.1016/j.jallcom.2008.09.078
Google Scholar
[11]
L. Zaluski, A. Zaluska, P. Tessier, J.O. Ström-Olsen, R. Schulz, Nanocrystalline Hydrogen Absorbing Alloys, Mater. Sci. Forum 225 (1996) 853-858.
DOI: 10.4028/www.scientific.net/msf.225-227.853
Google Scholar
[12]
D. Fátay, T. Spassov, P. Delchev, G. Ribárik, Á. Révész, Microstructural development in nanocrystalline MgH2 during H-absorption/desorption cycling, Int. J. Hydrogen Energy 32 (2007) 2914-2919.
DOI: 10.1016/j.ijhydene.2006.12.018
Google Scholar
[13]
Á. Révész, D. Fátay, T. Spassov, Microstructure and hydrogen sorption kinetics of Mg nanopowders with catalyst, J. Alloys Compd. 434-435 (2007) 725-728.
DOI: 10.1016/j.jallcom.2006.08.130
Google Scholar
[14]
Á. Révész, M. Gajdics, T. Spassov, Microstructural evolution of ball-milled Mg-Ni powder during hydrogen sorption, Int. J. Hydrogen Energy 38 (2013) 8342-8349.
DOI: 10.1016/j.ijhydene.2013.04.128
Google Scholar
[15]
Á. Révész, D. Fátay, Microstructural evolution of ball-milled MgH2 during a complete dehydrogenation-hydrogenation cycle, J. Power Sources 195 (2010) 6997-7002.
DOI: 10.1016/j.jpowsour.2010.04.085
Google Scholar
[16]
A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893-979.
DOI: 10.1016/j.pmatsci.2008.03.002
Google Scholar
[17]
R.Z. Valiev, R.K. Ishlamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103-189.
DOI: 10.1016/s0079-6425(99)00007-9
Google Scholar
[18]
Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science, Acta Mater. 61 (2013) 782-817.
DOI: 10.1016/j.actamat.2012.10.038
Google Scholar
[19]
Y. Kusadome, K. Ikeda, Y. Nakamori, S. Orimo, Z. Horita, Hydrogen storage capability of MgNi2 processed by high pressure torsion, Scripta Mater. 57 (2007) 751-753.
DOI: 10.1016/j.scriptamat.2007.06.042
Google Scholar
[20]
K. Edalati, A. Yamamoto, Z. Horita, T. Ishihara, High-pressure torsion of pure magnesium: Evolution of mechanical properties, microstructures and hydrogen storage capacity with equivalent strain, Scripta Mater. 64 (2011) 880-883.
DOI: 10.1016/j.scriptamat.2011.01.023
Google Scholar
[21]
Á. Révész, Zs. Kánya, T. Verebélyi, P.J. Szabó, A.P. Zhilyaev, T. Spassov, The effect of high-pressure torsion on the microstructure and hydrogen absorption kinetics of ball-milled Mg70Ni30, J. Alloys Compd. 504 (2010) 83-88.
DOI: 10.1016/j.jallcom.2010.05.058
Google Scholar
[22]
T. Hongo, K. Edalati, H. Iwaoka, M. Arita, J. Matsuda, E. Akiba, Z. Horita, High-pressure torsion of palladium: Hydrogen-induced softening and plasticity in ultrafine grains and hydrogen-induced hardening and embrittlement in coarse grains, Mater. Sci. Engineering A 618 (2014).
DOI: 10.1016/j.msea.2014.08.074
Google Scholar
[23]
Á. Révész, Á. Kis-Tóth, L.K. Varga, E. Schafler, I. Bakonyi, T. Spassov, Hydrogen storage of melt-spun amorphous Mg65Ni20Cu5Y10 alloy deformed by high-pressure torsion, Int. J. Hydrogen Energy, 37 (2012) 5769-5776.
DOI: 10.1016/j.ijhydene.2011.12.160
Google Scholar
[24]
T. Hongo, K. Edalati, M. Akita, J. Matsuda, E. Akiba, Z. Horita, Significance of grain boundaries and stacking faults on hydrogen storage properties of Mg2Ni intermetallics processed by high-pressure torsion, Acta Mater. 92 (2015) 46-54.
DOI: 10.1016/j.actamat.2015.03.036
Google Scholar
[25]
J. Bellemare, J. Huot, Hydrogen storage properties of cold rolled magnesium hydrides with oxides catalysts, J. Alloys Compd. 512 (2012) 33-38.
DOI: 10.1016/j.jallcom.2011.08.085
Google Scholar
[26]
D.R. Leiva, H.C. A. Costa, J. Huot, T.S. Pinheiro, A.M. Jorge, T.T. Ishikawa, W.J. Botta, Magnesium-Nickel alloy for hydrogen storage produced by melt spinning followed by cold rolling, Mater. Res. 15 (2012) 813-817.
DOI: 10.1590/s1516-14392012005000096
Google Scholar
[27]
Á. Révész, M. Gajdics, L.K. Varga, Gy. Krállics, T. Spassov, Hydrogen storage of nanocrystalline Mg-Ni alloy processed by equal-channel angular pressing and cold rolling, Int. J. Hydrogen Energy 39 (2014) 9911-9917.
DOI: 10.1016/j.ijhydene.2014.01.059
Google Scholar
[28]
J. Huot, Nanocrystalline metal hydrides obtained by severe plastic deformation, Metals 2 (2012) 22-40.
DOI: 10.3390/met2010022
Google Scholar
[29]
A.A.C. Asselli, N.B. Hébert, J. Huot, The role of morphology and severe plastic deformation on the hydrogen storage properties of magnesium, Int. J. Hydrogen Energy 39 (2014) 12778-12783.
DOI: 10.1016/j.ijhydene.2014.06.042
Google Scholar
[30]
V.M. Skripnyuk, E. Rabkin, Y. Estrin, R. Lapovok, The effect of ball milling and equal channel angular pressing on the hydrogen absorption/desorption properties of Mg–4. 95 wt% Zn–0. 71 wt% Zr (ZK60) alloy, Acta Mater. 52 (2004) 405-414.
DOI: 10.1016/j.actamat.2003.09.025
Google Scholar
[31]
V.M. Skripnyuk, E. Rabkin, Y. Estrin, R. Lapovok, Improving hydrogen storage properties of magnesium based alloys by equal channel angular pressing, Int. J. Hydrogen Energy 34 (2009) 6320-6324.
DOI: 10.1016/j.ijhydene.2009.05.136
Google Scholar
[32]
A.M. Jorge, E. Prokofiev, G.F. de Lima, E. Rauch, M. Veron, W.J. Botta, M. Kawasaki, T.G. Langdon, An investigation of hydrogen storage in a magnesium-based alloy processed by equal-channel angular pressing, Int. J. Hydrogen Energy 38 (2013).
DOI: 10.1016/j.ijhydene.2013.03.158
Google Scholar
[33]
T. Ungár, A. Borbély, The effect of dislocation contrast on x-ray line broadening: A new approach to line profile analysis, Appl. Phys. Lett. 69 (1996) 3173.
DOI: 10.1063/1.117951
Google Scholar
[34]
T. Ungár, I. Dragomir, Á. Révész, A. Borbély, The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice, J. Appl. Cryst. 32 (1999) 992-1002.
DOI: 10.1107/s0021889899009334
Google Scholar
[35]
Á. Révész, T. Ungár, A. Borbély, J. Lendvai, Dislocations and grain size in ball-milled iron powder, Nanostr. Mater. 7 (1996) 779-788.
DOI: 10.1016/s0965-9773(96)00048-7
Google Scholar
[36]
P.W. M Jacobs and F. C Tompkins, Classification and theory of solid reactions, in Chemistry of the Solid State, W.E. Garner (ed. ), Butterworth, London, 184-212 (1955).
Google Scholar
[37]
Á. Révész, M. Gajdics, L.K. Varga, T. Spassov, Hydrogenation of nanocrystalline Mg2Ni alloy prepared by high energy ball-milling followed by equal-channel angular pressing or cold rolling, Adv. Sci. Technol. 93 (2014) 112-117.
DOI: 10.4028/www.scientific.net/ast.93.112
Google Scholar