Correlation between Microstructure and Hydrogen Storage Properties of Nanocrystalline Magnesium Subjected to High-Pressure Torsion

Article Preview

Abstract:

High-pressure torsion was performed on commercial magnesium disks under uniaxial compression and simultaneously shear straining for different number of turns. Microstructural evolution during the severe plastic deformation process has been investigated by X-ray diffraction line profile analysis. Complementary hydrogen absorption experiments in a Sieverts’-type apparatus indicated that hydrogen storage and the microstructural parameters exhibit correlation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-73

Citation:

Online since:

February 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Züttel, Materials for hydrogen storage, Materials Today 6 (2003) 24–33.

Google Scholar

[2] M. Felderhoff, C. Weidenthaler, R. von Helmot, U. Eberle, Hydrogen storage the remaining scientific and technological challenges, Phys. Chem. Chem. Phys. 9 (2007) 2643-2653.

DOI: 10.1039/b701563c

Google Scholar

[3] E.C.E. Rönnebro, E.H. Majzoub, Recent advances in metal hydrides for clean energy application, MRS Bull. 38 (2013) 452-458.

DOI: 10.1557/mrs.2013.132

Google Scholar

[4] L. Schlapbach, A. Züttel, Hydrogen-storage materials for mobile applications, Nature 414 (2001) 353-358.

DOI: 10.1038/35104634

Google Scholar

[5] B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Metal hydride materials for solid hydrogen storage, Int. J. Hydrogen Energy 32 (2007) 1121–1140.

DOI: 10.1016/j.ijhydene.2006.11.022

Google Scholar

[6] R.A. Varin, T. Czujko, Z.S. Wronski, Nanomaterials for Solid State Hydrogen Storage, Springer Science, New York, (2009).

Google Scholar

[7] I.P. Jain, C. Lal, A. Jain, Hydrogen storage in Mg: A most promising material, Int. J. Hydrogen Energy 35 (2010) 5133–5144.

DOI: 10.1016/j.ijhydene.2009.08.088

Google Scholar

[8] D. Fátay, Á. Révész, T. Spassov, Particle size and catalytic effect on the dehydriding of MgH2, J. Alloys Compd. 399 (2005) 237-241.

DOI: 10.1016/j.jallcom.2005.02.043

Google Scholar

[9] W. Oelerich, T. Klassen, R. Bormann, Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials, J. Alloys Compd. 315 (2011) 237-242.

DOI: 10.1016/s0925-8388(00)01284-6

Google Scholar

[10] M. Danaie, D. Mitlin, TEM analysis and sorption properties of high-energy milled MgH2 powders, J. Alloys Compd. 476 (2008) 590-598.

DOI: 10.1016/j.jallcom.2008.09.078

Google Scholar

[11] L. Zaluski, A. Zaluska, P. Tessier, J.O. Ström-Olsen, R. Schulz, Nanocrystalline Hydrogen Absorbing Alloys, Mater. Sci. Forum 225 (1996) 853-858.

DOI: 10.4028/www.scientific.net/msf.225-227.853

Google Scholar

[12] D. Fátay, T. Spassov, P. Delchev, G. Ribárik, Á. Révész, Microstructural development in nanocrystalline MgH2 during H-absorption/desorption cycling, Int. J. Hydrogen Energy 32 (2007) 2914-2919.

DOI: 10.1016/j.ijhydene.2006.12.018

Google Scholar

[13] Á. Révész, D. Fátay, T. Spassov, Microstructure and hydrogen sorption kinetics of Mg nanopowders with catalyst, J. Alloys Compd. 434-435 (2007) 725-728.

DOI: 10.1016/j.jallcom.2006.08.130

Google Scholar

[14] Á. Révész, M. Gajdics, T. Spassov, Microstructural evolution of ball-milled Mg-Ni powder during hydrogen sorption, Int. J. Hydrogen Energy 38 (2013) 8342-8349.

DOI: 10.1016/j.ijhydene.2013.04.128

Google Scholar

[15] Á. Révész, D. Fátay, Microstructural evolution of ball-milled MgH2 during a complete dehydrogenation-hydrogenation cycle, J. Power Sources 195 (2010) 6997-7002.

DOI: 10.1016/j.jpowsour.2010.04.085

Google Scholar

[16] A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893-979.

DOI: 10.1016/j.pmatsci.2008.03.002

Google Scholar

[17] R.Z. Valiev, R.K. Ishlamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103-189.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[18] Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science, Acta Mater. 61 (2013) 782-817.

DOI: 10.1016/j.actamat.2012.10.038

Google Scholar

[19] Y. Kusadome, K. Ikeda, Y. Nakamori, S. Orimo, Z. Horita, Hydrogen storage capability of MgNi2 processed by high pressure torsion, Scripta Mater. 57 (2007) 751-753.

DOI: 10.1016/j.scriptamat.2007.06.042

Google Scholar

[20] K. Edalati, A. Yamamoto, Z. Horita, T. Ishihara, High-pressure torsion of pure magnesium: Evolution of mechanical properties, microstructures and hydrogen storage capacity with equivalent strain, Scripta Mater. 64 (2011) 880-883.

DOI: 10.1016/j.scriptamat.2011.01.023

Google Scholar

[21] Á. Révész, Zs. Kánya, T. Verebélyi, P.J. Szabó, A.P. Zhilyaev, T. Spassov, The effect of high-pressure torsion on the microstructure and hydrogen absorption kinetics of ball-milled Mg70Ni30, J. Alloys Compd. 504 (2010) 83-88.

DOI: 10.1016/j.jallcom.2010.05.058

Google Scholar

[22] T. Hongo, K. Edalati, H. Iwaoka, M. Arita, J. Matsuda, E. Akiba, Z. Horita, High-pressure torsion of palladium: Hydrogen-induced softening and plasticity in ultrafine grains and hydrogen-induced hardening and embrittlement in coarse grains, Mater. Sci. Engineering A 618 (2014).

DOI: 10.1016/j.msea.2014.08.074

Google Scholar

[23] Á. Révész, Á. Kis-Tóth, L.K. Varga, E. Schafler, I. Bakonyi, T. Spassov, Hydrogen storage of melt-spun amorphous Mg65Ni20Cu5Y10 alloy deformed by high-pressure torsion, Int. J. Hydrogen Energy, 37 (2012) 5769-5776.

DOI: 10.1016/j.ijhydene.2011.12.160

Google Scholar

[24] T. Hongo, K. Edalati, M. Akita, J. Matsuda, E. Akiba, Z. Horita, Significance of grain boundaries and stacking faults on hydrogen storage properties of Mg2Ni intermetallics processed by high-pressure torsion, Acta Mater. 92 (2015) 46-54.

DOI: 10.1016/j.actamat.2015.03.036

Google Scholar

[25] J. Bellemare, J. Huot, Hydrogen storage properties of cold rolled magnesium hydrides with oxides catalysts, J. Alloys Compd. 512 (2012) 33-38.

DOI: 10.1016/j.jallcom.2011.08.085

Google Scholar

[26] D.R. Leiva, H.C. A. Costa, J. Huot, T.S. Pinheiro, A.M. Jorge, T.T. Ishikawa, W.J. Botta, Magnesium-Nickel alloy for hydrogen storage produced by melt spinning followed by cold rolling, Mater. Res. 15 (2012) 813-817.

DOI: 10.1590/s1516-14392012005000096

Google Scholar

[27] Á. Révész, M. Gajdics, L.K. Varga, Gy. Krállics, T. Spassov, Hydrogen storage of nanocrystalline Mg-Ni alloy processed by equal-channel angular pressing and cold rolling, Int. J. Hydrogen Energy 39 (2014) 9911-9917.

DOI: 10.1016/j.ijhydene.2014.01.059

Google Scholar

[28] J. Huot, Nanocrystalline metal hydrides obtained by severe plastic deformation, Metals 2 (2012) 22-40.

DOI: 10.3390/met2010022

Google Scholar

[29] A.A.C. Asselli, N.B. Hébert, J. Huot, The role of morphology and severe plastic deformation on the hydrogen storage properties of magnesium, Int. J. Hydrogen Energy 39 (2014) 12778-12783.

DOI: 10.1016/j.ijhydene.2014.06.042

Google Scholar

[30] V.M. Skripnyuk, E. Rabkin, Y. Estrin, R. Lapovok, The effect of ball milling and equal channel angular pressing on the hydrogen absorption/desorption properties of Mg–4. 95 wt% Zn–0. 71 wt% Zr (ZK60) alloy, Acta Mater. 52 (2004) 405-414.

DOI: 10.1016/j.actamat.2003.09.025

Google Scholar

[31] V.M. Skripnyuk, E. Rabkin, Y. Estrin, R. Lapovok, Improving hydrogen storage properties of magnesium based alloys by equal channel angular pressing, Int. J. Hydrogen Energy 34 (2009) 6320-6324.

DOI: 10.1016/j.ijhydene.2009.05.136

Google Scholar

[32] A.M. Jorge, E. Prokofiev, G.F. de Lima, E. Rauch, M. Veron, W.J. Botta, M. Kawasaki, T.G. Langdon, An investigation of hydrogen storage in a magnesium-based alloy processed by equal-channel angular pressing, Int. J. Hydrogen Energy 38 (2013).

DOI: 10.1016/j.ijhydene.2013.03.158

Google Scholar

[33] T. Ungár, A. Borbély, The effect of dislocation contrast on x-ray line broadening: A new approach to line profile analysis, Appl. Phys. Lett. 69 (1996) 3173.

DOI: 10.1063/1.117951

Google Scholar

[34] T. Ungár, I. Dragomir, Á. Révész, A. Borbély, The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice, J. Appl. Cryst. 32 (1999) 992-1002.

DOI: 10.1107/s0021889899009334

Google Scholar

[35] Á. Révész, T. Ungár, A. Borbély, J. Lendvai, Dislocations and grain size in ball-milled iron powder, Nanostr. Mater. 7 (1996) 779-788.

DOI: 10.1016/s0965-9773(96)00048-7

Google Scholar

[36] P.W. M Jacobs and F. C Tompkins, Classification and theory of solid reactions, in Chemistry of the Solid State, W.E. Garner (ed. ), Butterworth, London, 184-212 (1955).

Google Scholar

[37] Á. Révész, M. Gajdics, L.K. Varga, T. Spassov, Hydrogenation of nanocrystalline Mg2Ni alloy prepared by high energy ball-milling followed by equal-channel angular pressing or cold rolling, Adv. Sci. Technol. 93 (2014) 112-117.

DOI: 10.4028/www.scientific.net/ast.93.112

Google Scholar