Investigation of Lattice Defects in a Plastically Deformed High-Entropy Alloy

Article Preview

Abstract:

The lattice defect structure developed during plastic deformation in a High-Entropy Alloy (HEA) with the composition of Ti35Zr27.5Hf27.5Nb5Ta5 was investigated. The crystallite size as well as the density and types of dislocations in a disk processed by High-Pressure Torsion (HPT) were determined by X-ray profile line analysis (XLPA). Additional transmission electron microscopy (TEM) investigations were carried out to monitor the grain size evolution during deformation. It was found that the dislocation density in the HPT-processed sample was very high compared to conventional materials. In addition, in Ti35Zr27.5Hf27.5Nb5Ta5 HEA the initial body-centered cubic structure transformed into a martensitic phase during HPT. The hardness of this HEA was investigated along the HPT-processed disk radius and correlated to the microstructure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

74-79

Citation:

Online since:

February 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299-303.

DOI: 10.1002/adem.200300567

Google Scholar

[2] D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, J. Tiles, Exploration and development of high entropy alloys for structural applications, Entropy 16 (2014) 494-525.

DOI: 10.3390/e16010494

Google Scholar

[3] Z. Zou, H. Ma, R. Spolenak, Ultrastrong ductile and stable high-entropy alloys at small scales, Nature Comm. 6 (2015) 1-6.

DOI: 10.1038/ncomms8748

Google Scholar

[4] L. Lilensten, J.P. Couzinié, L. Perrière, J. Bourgon, N. Emery, I. Guillot, New structure in refractory high-entropy alloys, Mater. Lett. 132 (2014) 123-125.

DOI: 10.1016/j.matlet.2014.06.064

Google Scholar

[5] G. Dirras, J. Gubicza, A. Heczel, L. Lilensten, J. -P. Couzinié, L. Perrière, Y. Guillot, A. Hocini, Microstructural investigation of plastically deformed Ti20Zr20Hf20Nb20Ta20 high entropy alloy by X-ray diffraction and transmission electron microscopy, Mater. Char. 108 (2015).

DOI: 10.1016/j.matchar.2015.08.007

Google Scholar

[6] J.P. Couzinié, L. Lilensten, Y. Champion, G. Dirras, L. Perrière, I. Guillot, On the room temperature deformation mechanisms of a TiZrHfNbTa refractory high-entropy alloy, Mater. Sci. Eng. A 645 (2015) 255-263.

DOI: 10.1016/j.msea.2015.08.024

Google Scholar

[7] T.G. Langdon, Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement, Acta Mater. 61 (2013) 7035-7059.

DOI: 10.1016/j.actamat.2013.08.018

Google Scholar

[8] R.Z. Valiev, A.P. Zhilyaev, T.G. Langdon, Bulk Nanostructured Materials, Fundamentals and Applications, John Wiley & Sons, Inc., Hoboken, New Jersey, (2014).

Google Scholar

[9] A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893-979.

DOI: 10.1016/j.pmatsci.2008.03.002

Google Scholar

[10] D.H. Lee, I.C. Choi, M.Y. Seok, J. He, Z. Lu, J.Y. Suh, M. Kawasaki, T.G. Langdon, J.I. Jang, Nanomechanical behavior and structural stability of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion, J. Mater. Res. 30 (2015).

DOI: 10.1557/jmr.2015.239

Google Scholar

[11] Q.H. Tang, Y. Huang, Y.Y. Huang, X.Z. Liao, T.G. Langdon, P.Q. Dai, Hardening of an Al0. 3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing, Mater. Lett. 151 (2015) 126–129.

DOI: 10.1016/j.matlet.2015.03.066

Google Scholar

[12] G. Dirras, H. Couque, L. Lilensten, A. Heczel, D. Tingaud, J. -P. Couzinié, L. Perrière, J. Gubicza, I. Guillot, Mechanical behavior and microstructure of Ti20Hf20Zr20Ta20Nb20 high-entropy alloy loaded under quasi-static and dynamic compression conditions, Mater. Char. 111 (2016).

DOI: 10.1016/j.matchar.2015.11.018

Google Scholar

[13] J.J. Vlassak, W.D. Nix, Measuring the elastic properties of anisotropic materials by means of indentation experiments, J. Mech. Phys. Solids 42 (1994) 1223-1245.

DOI: 10.1016/0022-5096(94)90033-7

Google Scholar

[14] R.B. Figueiredo, P.H.R. Pereira, M.T.P. Aguilar, P.R. Cetlin, T.G. Langdon, Using finite element modelling to examine the flow processes in quasi-constrained high-pressure torsion, Acta Mater. 60 (2012) 3190-3198.

DOI: 10.1016/j.actamat.2012.02.027

Google Scholar

[15] J. Nelson, D. Riley, An experimental investigation of extrapolation methods in the derivation of accurate until-cell dimensions of crystals Proc. Phys. Soc. Lond. 57 (1945) 160-177.

DOI: 10.1088/0959-5309/57/3/302

Google Scholar

[16] G. Ribárik, J. Gubicza, T. Ungár, Correlation between strength and microstructure of ball-milled Al–Mg alloys determined by X-ray diffraction, Mater. Sci. Eng. A 387-389 (2004) 343-347.

DOI: 10.1016/j.msea.2004.01.089

Google Scholar