Delamination of Kaolinite by Intercalation of Urea Using Milling

Article Preview

Abstract:

The effect of milling on structure of kaolinite-urea intercalates were studied. Untreated and treated kaolinite samples were examined by Field scanning electron microscopy (FESEM), X-ray powder diffraction (XRPD) and Fourier transform infrared (FT-IR) spectroscopy. The basal spacing of kaolinite measured by X-ray powder diffraction (XRPD) increased from 1.02 to 3.62 nm after intercalation by urea. Significantly, nature of intercalation was reached through formation of hydrogen bonds between urea and both Si-O and AlOH groups of the interlayer surface of kaolinite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

136-140

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.H. Murray, Traditional and New Applications for Kaolin, Smectite, and palygorskite: A General Overview. Thesis, ETH Zurich: Zurich, Switzerland. Appl. Clay. Sci. 17(2006) 207-221.

DOI: 10.1016/s0169-1317(00)00016-8

Google Scholar

[2] I. R. Wilson, Kaolin and Halloysite Deposits of China. Clay Miner. 39 (2004) 1–15.

DOI: 10.1180/0009855043910116

Google Scholar

[3] E. Mako, J. Kristof, E. Horvath, V. Vagvolgyi, Kaolinite urea complexes obtained by mechano-chemical and aqueous suspension techniques a comparative study. J. Colloid Interf. Sci. 330(2) (2009) 367-373.

DOI: 10.1016/j.jcis.2008.10.054

Google Scholar

[4] Y. Turhan, M. Dogan, M. Alkan, Poly (vinyl chloride)/kaolinite Nano composites: Characterization and Thermal and Optical Properties. Industrial and Engineering Chemistry Research, 49 (2010) 1503-1513.

DOI: 10.1021/ie901384x

Google Scholar

[5] R.F. Giese, Theoretical-Studies of the Kaolin Minerals-Electrostatic Calculations. Bulletin de Mineralogie, 105(5) (1982) 417-424.

DOI: 10.3406/bulmi.1982.7563

Google Scholar

[6] F. Franco, J.A. Cecila, L.A. Pérez-Maqueda, J.L. Pérez-Rodríguez, C.S.F. Gomes, Particle-size reduction of dickite by ultrasound treatments: effect on the structure, shape and particle-size distribution. Appl. Clay. Sci. 35(1) (2007) 119-127.

DOI: 10.1016/j.clay.2006.07.004

Google Scholar

[7] R.L. Frost, E. Mako, J. Kristóf, J.T. Kloprogge, Modification of kaolinite surfaces through mechano-chemical treatment a mid-IR and near-IR spectroscopic study. Spectrochim Acta. A. 58(13) (2002) 2849-2859.

DOI: 10.1016/s1386-1425(02)00033-1

Google Scholar

[8] S. Pavlidou, C.D. Papaspyrides, A review on polymer–layered silicate nano composites. Prog. Polym. Sci. 33(12) (2008) 1119-1198.

DOI: 10.1016/j.progpolymsci.2008.07.008

Google Scholar

[9] M. Valaskova, M. Rieder, V. Matejka, P. Capkova, A. Slíva, Exfoliation/delamination of kaolinite by low-temperature washing of kaolinite–urea intercalates. Appl. Clay. Sci. 35(1) (2007) 108-118.

DOI: 10.1016/j.clay.2006.07.001

Google Scholar

[10] H.A. Essawy, A.M. Youssef, A.A. Abd El-Hakim, A.M. Rabie, Exfoliation of kaolinite nano layers in poly (methyl methacrylate) using redox initiator system involving intercalating component. Polym-Plast. Technol. 48(2) (2009) 177-184.

DOI: 10.1080/03602550802577460

Google Scholar

[11] M. Valaskova, K. Barabaszova, M. Hundakova, M. Ritz, E. Plevova, Effect of brief milling and acid treatment on two ordered and disordered kaolinite structures, Appl. Clay. Sci. 54 (2011) 108-118.

DOI: 10.1016/j.clay.2011.07.014

Google Scholar

[12] F. Franco, L.A. Perez-Maqueda, J.L. Pérez-Rodrıguez, The effect of ultrasound on the particle size and structural disorder of a well-ordered kaolinite. J. Colloid Interf. Sci. 48(2) (2004) 177-184.

DOI: 10.1016/j.jcis.2003.12.003

Google Scholar

[13] R.L. Frost, J. Kristof, T.H. Tran, Kinetics of de-intercalation of potassium acetate from kaolinite a Raman spectroscopic study. Clay Miner. 33(4) (1998) 605-617.

DOI: 10.1180/claymin.1998.033.4.08

Google Scholar