Preparation and Blood Coagulation Property of Ortho Hydroxytoluene Chitosan

Article Preview

Abstract:

The aim of this paper was to synthesize ortho hydroxytoluene chitosan for hemostatic use. A series of modified chitosan were prepared by reductive amination through adjusting the dosages of salicylaldehyde and sodium borohydride. FTIR, elemental analysis and XRD tests were performed to analyze the composition, degree of substitution (DS) and crystallisability of chitosan derivatives. Rheological and blood coagulation experiments were carried out to measure its gel-forming and hemostasis property in vitro. The results showed ortho hydroxytoluene groups could be grafted on chitosan, DS value can be adjusted by the dosage of reactive agents, and the crystallinity of chitosan changed obviously after modification. The rheological results indicated high substituted (≥26.79 mol-%) ortho hydroxytoluene chitosan could gel blood and showed better blood coagulation property. High substituted ortho hydroxytoluene chitosan could improve hemostatic property significantly.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

62-68

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. G. Chapman, N. Jacobs, M.J. Midwinter, Pre-hospital haemostatic dressings: A systematic review, Injury, Int. J. Care Injured 42 (2011), 447-459.

DOI: 10.1016/j.injury.2010.09.037

Google Scholar

[2] J.F. Kelly, A.E. Ritenour, D.F. McLaughlin, Injury severity and causes of death from Operation Iraqi Freedom and Operation Enduring Freedom: 2003–2004 versus 2006, J. Trauma 64 (2008), 21–27.

DOI: 10.1097/ta.0b013e318160b9fb

Google Scholar

[3] M.A. Brown, M.R. Daya, J.A. Worley, Esperience with chitosan dressings in a cilvilian EMS system, J Emerg. Med. 37 (2009), 1–7.

Google Scholar

[4] B. Gegel, J. Burgert, B. Cooley, J. MacGregor, J. Myers, S. Calder, R. Luellen, M. Loughren, D. Johnson, The effects of BleedArrest, Celox, and TraumaDex on hemorrhage control in a porcine model, J. Surg. Res. 164 (2010), e125–e129.

DOI: 10.1016/j.jss.2010.07.060

Google Scholar

[5] W.A. Sakchai, P. Chureerat, Development and in vitro evaluation of chitosan–polysaccharides composite wound dressings, Int. J. Pharm. 313 (2006), 123-128.

Google Scholar

[6] X.F. Huang, Y.F. Sun, J.Y. Nie, W.T. Lu, L. Yang, Z.L. Zhang, H.P. Yin, Z.K. Wang, Q.L. Hu, Using absorbable chitosan hemostatic sponges as a promising surgical dressing, Int. J Biol. Macromol. 75 (2015), 322–329.

DOI: 10.1016/j.ijbiomac.2015.01.049

Google Scholar

[7] B.K. Gu, S.J. Park, M.S. Kim, C.M. Kang, J. Kim, C.H. Kim, Fabrication of sonicated chitosan nanofiber mat with enlarged porosity for use as hemostatic materials, Carbohydr. Polym. 97 (2013), 65-71.

DOI: 10.1016/j.carbpol.2013.04.060

Google Scholar

[8] M.B. Dowling, R Kumar, M.A. Keibler, J.R. Hess, G.V. Bochicchio, S.R. Raghavan, A self-assembling hydrophobically modified chitosan capable of reversible hemostatic action, Biomaterials 32 (2011), 3351-3357.

DOI: 10.1016/j.biomaterials.2010.12.033

Google Scholar

[9] R. Muzzarelli, Removal of uranium from solutions and brines by a derivative of chitosan and ascorbic acid, Carbohydr. Polym. 5(1985), 85-89.

DOI: 10.1016/0144-8617(85)90026-8

Google Scholar

[10] M. Rinaudo, New Amphiphilic Grafted copolymers based on polysaccharides, Carbohydr. Polym. 83 (2011), 1338-1344.

DOI: 10.1016/j.carbpol.2010.09.054

Google Scholar

[11] Z.M. dos Santos, A.L.P.F. Caroni, M.R. Pereira, D. R. da Silva, J.L.C. Fonseca, Determination of Deacetylation Degree of Chitosan: A Comparison between Conductometric Titration and CHN Elemental Analysis, Carbohydr. Res. 344 (2009), 2591- 2595.

DOI: 10.1016/j.carres.2009.08.030

Google Scholar

[12] O. Ornella, D. Gerardino, M. Gaetano, C. Donato, The aggregative behavior of hydrophobically modified chitosans with high substitution degree in aqueous solution, Carbohydr. Polym. 74 (2008), 16–22.

DOI: 10.1016/j.carbpol.2008.01.009

Google Scholar

[13] J. Desbrières, C. Martinez, M. Rinaudo, Hydrophobic derivatives of chitosan: characterization and rheological behavior, Int. J. Biol. Macromol. 19 (1996), 21-28.

DOI: 10.1016/0141-8130(96)01095-1

Google Scholar

[14] G.P. Ma, D.Z. Yang, Y.S. Zhou, M. Xiao, J.F. Kennedy, J. Nie, Preparation and characterization of water-soluble N-alkylated chitosan, Carbohydr. Polym. 74 (2008), 121-126.

DOI: 10.1016/j.carbpol.2008.01.028

Google Scholar

[15] Y.Y. Li, S.S. Zhang, X.J. Meng, X.G. Chen, G.D. Ren, The Preparation and characterization of a novel amphiphilic oleoyl-carboxymethyl chitosan self-assembled nanoparticles, Carbohydr Polym. (83) 2011, 130-136.

DOI: 10.1016/j.carbpol.2010.07.030

Google Scholar

[16] K. Almdal, J. Dyre, S. Hvidt, O. Kramer, Towards a phenomenological definition of the term gel, Polym. Gels Networks 1 (1993), 5-17.

DOI: 10.1016/0966-7822(93)90020-i

Google Scholar

[17] Q. He, J. Guan, M.L. Jing, S.J. Huang, C. Xu, Z.H. Li, J.M. Wu, X.Z. Zhang, Synthesis and characterization of hydrophobically modified chitosan, Afr. J Pharm. Pharmaco. 6 (2012), 3285-3292.

DOI: 10.5897/ajpp12.1427

Google Scholar