[1]
C. Giolli, A. Scrivani, et al. Failure Mechanism for Thermal Fatigue of Thermal Barrier Coating Systems [J]. Journal of Thermal Spray Technology, 2009, 18(2), 223-230.
DOI: 10.1007/s11666-009-9307-4
Google Scholar
[2]
H. Miyazaki. The Effect of TiO2 Additives on the Structural Stability and Thermal Properties of Yttria Fully-Stabilized Zirconia [J]. Journal of Thermal Analysis and Calorimetry, 2009, 98, 343-346.
DOI: 10.1007/s10973-009-0297-8
Google Scholar
[3]
M. A. Helminiak, N. M. Yanar, et al. The Behavior of High-Purity, Low-Density Air Plasma Sprayed Thermal Barrier Coatings [J]. Surface & Coatings Technology, 2009, 204, 793-796.
DOI: 10.1016/j.surfcoat.2009.09.065
Google Scholar
[4]
S. Paul, A. Cipitria, et al. Effects of Impurity Content on the Sintering Characteristics of Plasma-Sprayed Zirconia [J]. Journal of Thermal Spray Technology, 2007, 16(5-6): 798-803.
DOI: 10.1007/s11666-007-9097-5
Google Scholar
[5]
N. Curry, W. Janikowski, et al. Impact of Impurity Content on the Sintering Resistance of Ysprosia and Yttria Stabilised Zirconia Thermal Barrier Coatings [J]. Proceedings of the International Thermal Spray Conference, Coating Solutions for the Global Economy, Thermal Spray 2013-Innovative, 557-563.
DOI: 10.1007/s11666-013-0014-9
Google Scholar
[6]
H. Miyazaki. The Effect of TiO2 Additives on the Structural Stability and Thermal Properties of Yttria Fully-Stabilized Zirconia [J]. Journal of Thermal Analysis and Calorimetry, 2009(98): 343-346.
DOI: 10.1007/s10973-009-0297-8
Google Scholar
[7]
L. Xie, M. R. Dorfman, et al. Properties and Performance of High Purity Thermal Barrier Coatings. ITCS (2007).
Google Scholar
[8]
G.D. Girolamo, F. Marra, et al. Microstructure, Mechanical Properties and Thermal Shock Resistance of Plasma Sprayed Nanostructured Zirconia Coatings, Ceramics International, 2011, 37 (7): 2711-2717.
DOI: 10.1016/j.ceramint.2011.04.024
Google Scholar
[9]
X. Deng, D. Zhang. The Investigations of Thermal Shock Resistance of Zirconia Ceramic Thermal Barrier Coatings Using Plasma Spraying [A], in Proceedings of China Aviation Society: The Application of Thermal Barrier Coating Technology in Aviation Engine Conference [C], Hebei, China Aviation Institute Press, 1998: 82-86. (in Chinese).
DOI: 10.1016/j.surfcoat.2017.01.112
Google Scholar
[10]
C. Zhu, A. Javed, et al. A Study of the Microstructure and Oxidation Behavior of Alumina/Yttria-Stabilized Zirconia (Al2O3/YSZ) Thermal Barrier Coatings [J]. Surface & Coatings Technology, 2012, 212 214-222.
DOI: 10.1016/j.surfcoat.2012.09.052
Google Scholar
[11]
S. Rangaraj, K. Kokini. Journal of Application Mesh (ASME), 2003, 70: 234-245.
Google Scholar
[12]
I. M. Ross, W. M. Rainforth, et al. The Role of Trace Additions of Alumina to Yttria-Tetragonal Zirconia Polycrystals (Y-TZP) [J]. Scripta Material 2001, 45: 653-660.
DOI: 10.1016/s1359-6462(01)01076-4
Google Scholar
[13]
S.N.B. Hodgsona, J. Cawley, et al. The Role of Al2O3 Impurities on the Microstructure and Properties of Y-TZP [J]. Journal of Materials Processing Technology, 1999, 92-93: 85-90.
DOI: 10.1016/s0924-0136(99)00164-8
Google Scholar
[14]
F. Guo, P. Xiao. Effect of Fe2O3 doping on Sintering of Yttria-Stabilized Zirconia [J]. Journal of the European Ceramic Society, 2012, 32: 4157-4164.
DOI: 10.1016/j.jeurceramsoc.2012.07.035
Google Scholar
[15]
S.N.B. Hodgson, J. Cawley, M. Clubley. The Role of SiO2 Impurities in the Microstructure and Properties of Y-TZP [J]. Journal of Materials Processing Technology 1999, 86: 139-145.
DOI: 10.1016/s0924-0136(98)00302-1
Google Scholar
[16]
H. Gu, F. Wakai. Segregation and Local Structure at Grain Boundaries in SiO2-Doped Tetragonal ZrO2 Polycrystalline Materials [J]. Journal of Materials Synthesis and Processing, 1998, 6(6): 393-399.
Google Scholar
[17]
L. Gremillard, T. Epicier, et al. Microstructural Study of Silica-Doped Zirconia Ceramics [J]. Acta Materialia. 2000, 48: 4647-4652.
DOI: 10.1016/s1359-6454(00)00252-4
Google Scholar
[18]
A. Liu, X. Zhang, et al. Impact of Microscopic Bonding on The Thermal Stability and Mechanical Property of Cab6: A First-Principles Investigation, Ceramic International, 2014, 40 (10): 15997-16002.
DOI: 10.1016/j.ceramint.2014.07.131
Google Scholar
[19]
J. Lei, G. Liu, et al. Adhesion Strength and Thermal Shock Properties of Nanostructured 5La3TiYSZ, 8LaYSZ and 8CeYSZ Coatings Prepared by atmospheric Plasma Spraying [J]. Ceramics International 2015(41): 12099-12106.
DOI: 10.1016/j.ceramint.2015.06.027
Google Scholar