[1]
T. Akao, Y. Sakurai, T. Onda, K. Uehara, Z.C. Chen. Surface Modification of Cold-working Die Steel by Electron Beam Irradiation-Formation of Cemented Carbide Composite Layer , Prec. Eng. 81 (2014) 1939-(1944).
DOI: 10.1016/j.proeng.2014.10.261
Google Scholar
[2]
L.S. Zhong, F.X. Ye, Y.H. Xu, J.S. Li. Microstructure and abrasive wear characteristics of in situ vanadium carbide particulate-reinforced iron matrix composites, Mater. Des. 54 (2014) 564-569.
DOI: 10.1016/j.matdes.2013.08.097
Google Scholar
[3]
A. Ghabchi, S. Sampath, K. Holmberg, et al. Damage mechanisms and cracking behavior of thermal sprayed WC–CoCr coating under scratch testing, Wear . 313 (2014) 97-105.
DOI: 10.1016/j.wear.2014.02.017
Google Scholar
[4]
J. Pujante, M. Vilaseca, D. Casellas, et al. High temperature scratch testing of hard PVD coatings deposited on surface treated tool steel, Surf. Coat. Technol. 254 (2014) 352-357.
DOI: 10.1016/j.surfcoat.2014.06.040
Google Scholar
[5]
K. Farokhzadeh, A. Edrisy, G. Pigott, et al. Scratch resistance analysis of plasma-nitrided Ti-6Al-4V alloy, Wear 302 (2013) 845-853.
DOI: 10.1016/j.wear.2013.01.070
Google Scholar
[6]
M. Gee, K. Mingard, J. Nunn, et al. In situ scratch testing and abrasion simulation of WC/Co, Int. J. Refract. Met. Hard Mater. 62 (2017) 192-201.
DOI: 10.1016/j.ijrmhm.2016.06.004
Google Scholar
[7]
X.L. Cai, Y.H. Xu, N.N. Zhao, et al. Investigation of the adhesion strength and deformation behaviour of in situ fabricated NbC coatings by scratch testing, Surf. Coat. Technol. 299 (2016) 135-142.
DOI: 10.1016/j.surfcoat.2016.05.004
Google Scholar
[8]
T.A. Adler, R.P. Walters, Wear and scratch hardness of 304 stainless steel investigated with a single scratch test, Wear. 162-164 (1993) 713-720.
DOI: 10.1016/0043-1648(93)90071-s
Google Scholar
[9]
A.T. Akono, F.J. Ulm, An improved technique for characterizing the fracture toughness via scratch test experiments, Wear . 313 (2014) 117-124.
DOI: 10.1016/j.wear.2014.02.015
Google Scholar
[10]
V. Vitry, F. Delaunois, C. Dumortier. Mechanical properties and scratch test resistance of nickel-boron coated aluminium alloy after heat treatments, Surf. Coat. Technol. 202 (2008) 3316-3324.
DOI: 10.1016/j.surfcoat.2007.12.001
Google Scholar
[11]
F.X. Ye, M. Hojamberdiev, Y. H Xu, L.S. Zhong, et. al. Microstructure, microhardness and wear resistance of VCp/Fe surface composites fabricated in situ, Appl. Surf. Sci. 280 (2013) 297-303.
DOI: 10.1016/j.apsusc.2013.04.152
Google Scholar
[12]
P. Scherrer, Bestimmung der Grosse und der inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen, Nachr. Ges. Wiss. Got, Math. -Phys. Kl. 2 (1918) 98-100.
DOI: 10.1007/978-3-662-33915-2_7
Google Scholar
[13]
G.K. Williamson, W.H. Hall, X-ray line broadening from filed Al and W, Acta Metall. 1 (1953) 22-31.
Google Scholar
[14]
Z.W. Zhao, H.G. Zuo, Y. Liu ,W.Q. Song, S.F. Mao Y.R. Wang. Effects of additives on synthesis of vanadium carbide (V8C7) nanopowders by thermal processing of the precursor, Int J Refract Met Hard Mater. 27 (2009) 971-975.
DOI: 10.1016/j.ijrmhm.2009.06.002
Google Scholar
[15]
N.C. Halder, C.N.J. Wagner, Separation of particle size and lattice strain in integral breadth measurements, Acta Crystallogr. 20 (1966) 312-313.
DOI: 10.1107/s0365110x66000628
Google Scholar
[16]
J. Langford, J. Appl. Investigation of antiphase domains in lithium ferrite by analysis of the broadened X-ray lines, Acta Crystallogr. 34 (1978) 74-84.
DOI: 10.1107/s0567739478000145
Google Scholar
[17]
R. Daly, M. Khitouni, A.W. Kolsi, N. Njah, Phys. The studies of crystallite size and microstrains in aluminum powder prepared by mechanical milling, Physica A. 3 (2006) 3325-3331.
DOI: 10.1002/pssc.200567112
Google Scholar
[18]
D. Gouvêa, G.J. Pereira, L. Gengembre, M.C. Steil, P. Roussel, A. Rubbens, et al. Quantification of MgO surface excess on the SnO2 nanoparticles and relationship with nanostability and growth, Appl. Surf. Sci. 257 (2011) 4219-4226.
DOI: 10.1016/j.apsusc.2014.05.017
Google Scholar