Grain Size and Adhesion Strength of the V8C7 Coatings Produced In Situ

Article Preview

Abstract:

The vanadium carbide (V8C7) coating was fabricated by in situ reaction which used gray cast iron and vanadium plate as raw materials providing carbon and vanadium sources, respectively. The microstructure, phases, and adhesion strength of V8C7 coating were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD) and a single scratch test. The XRD results showed that the coating consisted of V8C7 and α-Fe, with the peaks of (222), (400), (440), (622) and (444) of V8C7 phase were confirmed. Moreover, the average diameter (D) of the V8C7 particles in the range of 432~582nm was calculated on the basis of the Scherrer and Halder-Wagner equations. The critical load of interface between V8C7 and substrate was 98.3 N, which implied that the interface of V8C7 coating /substrate had excellent adhesion strength.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1381-1387

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Akao, Y. Sakurai, T. Onda, K. Uehara, Z.C. Chen. Surface Modification of Cold-working Die Steel by Electron Beam Irradiation-Formation of Cemented Carbide Composite Layer , Prec. Eng. 81 (2014) 1939-(1944).

DOI: 10.1016/j.proeng.2014.10.261

Google Scholar

[2] L.S. Zhong, F.X. Ye, Y.H. Xu, J.S. Li. Microstructure and abrasive wear characteristics of in situ vanadium carbide particulate-reinforced iron matrix composites, Mater. Des. 54 (2014) 564-569.

DOI: 10.1016/j.matdes.2013.08.097

Google Scholar

[3] A. Ghabchi, S. Sampath, K. Holmberg, et al. Damage mechanisms and cracking behavior of thermal sprayed WC–CoCr coating under scratch testing, Wear . 313 (2014) 97-105.

DOI: 10.1016/j.wear.2014.02.017

Google Scholar

[4] J. Pujante, M. Vilaseca, D. Casellas, et al. High temperature scratch testing of hard PVD coatings deposited on surface treated tool steel, Surf. Coat. Technol. 254 (2014) 352-357.

DOI: 10.1016/j.surfcoat.2014.06.040

Google Scholar

[5] K. Farokhzadeh, A. Edrisy, G. Pigott, et al. Scratch resistance analysis of plasma-nitrided Ti-6Al-4V alloy, Wear 302 (2013) 845-853.

DOI: 10.1016/j.wear.2013.01.070

Google Scholar

[6] M. Gee, K. Mingard, J. Nunn, et al. In situ scratch testing and abrasion simulation of WC/Co, Int. J. Refract. Met. Hard Mater. 62 (2017) 192-201.

DOI: 10.1016/j.ijrmhm.2016.06.004

Google Scholar

[7] X.L. Cai, Y.H. Xu, N.N. Zhao, et al. Investigation of the adhesion strength and deformation behaviour of in situ fabricated NbC coatings by scratch testing, Surf. Coat. Technol. 299 (2016) 135-142.

DOI: 10.1016/j.surfcoat.2016.05.004

Google Scholar

[8] T.A. Adler, R.P. Walters, Wear and scratch hardness of 304 stainless steel investigated with a single scratch test, Wear. 162-164 (1993) 713-720.

DOI: 10.1016/0043-1648(93)90071-s

Google Scholar

[9] A.T. Akono, F.J. Ulm, An improved technique for characterizing the fracture toughness via scratch test experiments, Wear . 313 (2014) 117-124.

DOI: 10.1016/j.wear.2014.02.015

Google Scholar

[10] V. Vitry, F. Delaunois, C. Dumortier. Mechanical properties and scratch test resistance of nickel-boron coated aluminium alloy after heat treatments, Surf. Coat. Technol. 202 (2008) 3316-3324.

DOI: 10.1016/j.surfcoat.2007.12.001

Google Scholar

[11] F.X. Ye, M. Hojamberdiev, Y. H Xu, L.S. Zhong, et. al. Microstructure, microhardness and wear resistance of VCp/Fe surface composites fabricated in situ, Appl. Surf. Sci. 280 (2013) 297-303.

DOI: 10.1016/j.apsusc.2013.04.152

Google Scholar

[12] P. Scherrer, Bestimmung der Grosse und der inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen, Nachr. Ges. Wiss. Got, Math. -Phys. Kl. 2 (1918) 98-100.

DOI: 10.1007/978-3-662-33915-2_7

Google Scholar

[13] G.K. Williamson, W.H. Hall, X-ray line broadening from filed Al and W, Acta Metall. 1 (1953) 22-31.

Google Scholar

[14] Z.W. Zhao, H.G. Zuo, Y. Liu ,W.Q. Song, S.F. Mao Y.R. Wang. Effects of additives on synthesis of vanadium carbide (V8C7) nanopowders by thermal processing of the precursor, Int J Refract Met Hard Mater. 27 (2009) 971-975.

DOI: 10.1016/j.ijrmhm.2009.06.002

Google Scholar

[15] N.C. Halder, C.N.J. Wagner, Separation of particle size and lattice strain in integral breadth measurements, Acta Crystallogr. 20 (1966) 312-313.

DOI: 10.1107/s0365110x66000628

Google Scholar

[16] J. Langford, J. Appl. Investigation of antiphase domains in lithium ferrite by analysis of the broadened X-ray lines, Acta Crystallogr. 34 (1978) 74-84.

DOI: 10.1107/s0567739478000145

Google Scholar

[17] R. Daly, M. Khitouni, A.W. Kolsi, N. Njah, Phys. The studies of crystallite size and microstrains in aluminum powder prepared by mechanical milling, Physica A. 3 (2006) 3325-3331.

DOI: 10.1002/pssc.200567112

Google Scholar

[18] D. Gouvêa, G.J. Pereira, L. Gengembre, M.C. Steil, P. Roussel, A. Rubbens, et al. Quantification of MgO surface excess on the SnO2 nanoparticles and relationship with nanostability and growth, Appl. Surf. Sci. 257 (2011) 4219-4226.

DOI: 10.1016/j.apsusc.2014.05.017

Google Scholar