TiN-Al Composite Coatings on A356 Alloy by Mechanical Alloying

Article Preview

Abstract:

The TiN-Al composite coatings on A356 alloy were successfully synthesized by mechanical alloying (MA) of Al, TiN and C powders under argon atmosphere. Meanwhile, the optimal parameters for mechanical milling processing were determined by changing the material ratio (Al: TiN: C), milling time and the ball-to-powder weight ratio, which might have a significant improvement on the wear resistance of A356 alloys. The microstructures and mechanical properties of A356 alloy samples with TiN-Al composite coatings were characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and Brinell hardness test. It was found that under the optimal conditions, i.e. the material ratio of (Al: TiN: C= 17.5:1.5:1), the ball-to-powder weight ratio of 14:1 and the milling duration of 12 h, the Brinell hardness of sample-6 could be remarkably increased to 143.80 HBW. With the TiN-Al coatings fabricated by MA process, the mechanical properties of aluminum alloys could be significantly improved.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1359-1368

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Chirita, I. Stefanescu, D. Soares, F.S. Silva, Influence of vibration on the solidification behaviour and tensile properties of an Al–18wt. % Si alloy, Mater. Design, 30 (2009) 1575–1580.

DOI: 10.1016/j.matdes.2008.07.045

Google Scholar

[2] P.T. Li, S.D. Liu, L.L. Zhang, X.F. Liu, Grain refinement of A356 alloy by Al–Ti–B–C master alloy and its effect on mechanical properties, Mater. Design, 47 (2013) 522–528.

DOI: 10.1016/j.matdes.2012.12.033

Google Scholar

[3] G.L. Song, The effect of texture on the corrosion behavior of AZ31 alloy, JOM, 64 (2012), 671-679.

DOI: 10.1007/s11837-012-0341-1

Google Scholar

[4] P.S. Correa, C.F. Malfatti and D.S. Azambuja, Corrosion behavior study of AZ91 alloy coated with methyltriethoxysilane doped with cerium irons, Pro. Org. Coat, 72 (2011), 739-747.

DOI: 10.1016/j.porgcoat.2011.08.005

Google Scholar

[5] S.P. Dwivedi, S. Sharma, R.K. Mishra, Microstructure and Mechanical Properties of A356/SiC Composites Fabricated by Electromagnetic Stir Casting, Pro. Mater. Sci., 6 (2014) 1524-1532.

DOI: 10.1016/j.mspro.2014.07.133

Google Scholar

[6] M. Reddy, K.S. Rao, Enhancement of wear and corrosion resistance of cast A356 aluminium alloy using friction stir processing, Trans. Indian Inst. Met., 63(2010), 793–798.

DOI: 10.1007/s12666-010-0121-y

Google Scholar

[7] Y.Y. Wu, X.F. Liu. G.L. Ma, C. Li, J.Q. Zhang, High energy milling method to prepare Al/WC composite coatings in Al–Si alloys, J. Alloy Compd. 497 (2010) 139–141.

DOI: 10.1016/j.jallcom.2010.03.086

Google Scholar

[8] M. Karbalaei Akbari, H.R. Baharvandi, O. Mirzaee, Nano-sized aluminum oxide reinforced commercial casting A356 alloy matrix: Evaluation of hardness, wear resistance and compressive strength focusing on particle distribution in aluminum matrix, Compos. Part B, 52 (2013).

DOI: 10.1016/j.compositesb.2013.04.038

Google Scholar

[9] Q. Wang, K. Spencer, N. Birbilis and M.X. Zhang, The influence of ceramic particles on bond strength of cold spray composite coatings on AZ91 alloy substrate, Surf. Coat. Technol., 205 (2010), 50–56.

DOI: 10.1016/j.surfcoat.2010.06.008

Google Scholar

[10] A. Araghi and M.H. Paydar, Electroless deposition of Ni–P–B4C composite coating on AZ91D magnesium alloy and investigation on its wear and corrosion resistance, Mater. Des. 3 (2010), 3095–3099.

DOI: 10.1016/j.matdes.2009.12.042

Google Scholar

[11] H.C. Man, Y.Q. Yang, W.B. Lee, Laser induced reaction synthesis of TiC + WC reinforced metal matrix composites coatings on Al 6061, Surf. Coat. Technol., 185 (2004), 74 – 80.

DOI: 10.1016/j.surfcoat.2003.10.132

Google Scholar

[12] G. Bolelli, L. Lusvarghi, M. Barletta, HVOF-sprayed WC–CoCr coatings on Al alloy: Effect of the coating thickness on the tribological properties, Wear, 267 (2009), 944–953.

DOI: 10.1016/j.wear.2008.12.066

Google Scholar

[13] W.Y. Li, G. Zhang, C. Zhang, O. Elkedim, H. Liao, C. Coddet, Effect of Ball Milling of Feedstock Powder on Microstructure and Properties of TiN Particle-Reinforced Al Alloy-Based Composites Fabricated by Cold Spraying, Therm. Spray Technol., 17 (2008).

DOI: 10.1007/s11666-008-9182-4

Google Scholar

[14] R. Esquivel-Gonzalez, H.J. Dorantes, V.M. Lpeóz-Hiata, J.L. González-Velázquez, E. Contreras-Piedr-as, M.L. Saucedo-Muňoz and F. Hernádez Santigo, Phase transformations included by mechanical alloying of Ag-28 at. % Al alloy, Mater. Sci. Technol., 26 (2010).

DOI: 10.1179/174328408x389760

Google Scholar

[15] X.G. Zou and Y. Zou, Synthesis and thermal stability of novel amorphous Al70Fe25Zr5 alloy prepared by mechanical alloying, Mater. Sci. Technol., 32 (2009), 1447-1455.

Google Scholar

[16] M.A. Willard and V. Franco, The role of microstructure and processing on magnetic properties of materials, JOM, 64 (2013), 851-852.

DOI: 10.1007/s11837-013-0621-4

Google Scholar

[17] V. Zadorozhnyy, S. Kaloshkin, E. Kaeviser and S. Romankov, Coating of metals with intermetallics by mechanical alloying, J. Alloys Compd., 509 (2011), 507-509.

DOI: 10.1016/j.jallcom.2011.01.164

Google Scholar

[18] F.C. Robles-Hernández and H.A. Calderon, Nanostructured metal composites reinforced with fullerenes, JOM, 62 (2010), 63-68.

DOI: 10.1007/s11837-010-0034-6

Google Scholar

[19] M. Mohammadnezhad, M. Shamanian, M.H. Enagati and M. Salehi, Influence of annealing temperature on the structure and properties of the nanograined NiAl intermetallic coatings produced by using mechanical alloying. Surf. Coat. Technol., 217 (2013).

DOI: 10.1016/j.surfcoat.2012.11.073

Google Scholar

[20] S. Romankov, Y. Hayasaka, I.V. Shchetinin, E. Kasai, S.V. Komarov and J.M. Yoon, Investigation of structural formation of Al-SiC surface composite under ball collision, Mater. Sci. Eng. A, 528 (2011), 3455-3462.

DOI: 10.1016/j.msea.2011.01.043

Google Scholar

[21] A. Molladavoudi, S. Amirkhanlou, M, Shamanian and F. Ashrafizadeh, The production of nanocrystalline cobalt titanide intermetallic compound via mechanical alloying. Intermetallics, 29 (2012), 104-109.

DOI: 10.1016/j.intermet.2012.05.012

Google Scholar

[22] S. Romankov, S.V. Komarov, E. Vdovichenko, Y. Hayasaka, N. Hayashi, S.D. Kaloshkin, E. Kasai, Fabrication of TiN coatings using mechanical milling techniques. Surf. Coat. Technol., 27 (2009), 492-497.

DOI: 10.1016/j.ijrmhm.2008.10.005

Google Scholar

[23] E. Gaffet, C. Louison, M. Harmelin, F. Faudot, Metastable phase transformations induced by ball-milling in the Cu-W system, Mater. Sci. Eng. A, 134 (1991) 1380-1384.

DOI: 10.1016/0921-5093(91)90995-y

Google Scholar

[24] J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, S.J. Lin, Anomalous decreased in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements, Mater. Chem. Phys., 103 (2007), 41-46.

DOI: 10.1016/j.matchemphys.2007.01.003

Google Scholar

[25] K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, W.M. Wang, H. Wang, Y.C. Wang, Q.J. Zhang, J. Shi, Microstructure and Mechanical Properties of CoCrFeNiAlx High-Entropy Alloys, Mater. Sci. Eng. A, 508 (2009), 214-219.

DOI: 10.1016/j.msea.2008.12.053

Google Scholar