[1]
K. Sato, T. Yoshiie, Y. Satoh, Q. Xu, E. Kuramoto, M. Kiritani, Point defect production under high internal stress without dislocations in Ni and Cu, Radiat. Eff. Defect Solid 157 (2002) 171–178.
DOI: 10.1080/10420150211403
Google Scholar
[2]
K. Sato, T. Yoshiie, Y. Satoh, Q. Xu, Detection of interstitial clusters in neutron irradiated Ni-Hf alloy by perturbed angular correlation and positron annihilation life time measurements, Mater. Trans. 45 (2004) 833–838.
DOI: 10.1016/j.jnucmat.2004.04.065
Google Scholar
[3]
V. Gavini, Role of macroscopic deformations in energetics of vacancies in aluminum, Phys. Rev. Lett. 101 (2008) 205503.
DOI: 10.1103/physrevlett.101.205503
Google Scholar
[4]
F.E. Fujita, Generation of vacancies in high-speed plastic deformation, Mater. Sci. Eng. A 350 (2003) 216–219.
Google Scholar
[5]
S.J. Zinkle, L.L. Snead, Microstructure of copper and nickel irradiated with fission neutrons near 230℃, J. Nucl. Mater. 225 (1995) 123-131.
DOI: 10.1016/0022-3115(94)00670-9
Google Scholar
[6]
Y. Chimi, A. Iwase, N. Ishikawa, M. Kobiyama, T. Inami, S. Okuda, Accumulation and recovery of defects in ion-irradiated nanocrystalline gold, J. Nucl. Mater. 297 (2001) 355-357.
DOI: 10.1016/s0022-3115(01)00629-8
Google Scholar
[7]
G. Was, Fundamentals of Radiation Materials Science: Metals and Alloys, 1st ed., Springer, New York, Berlin, Heidelberg, (2007).
Google Scholar
[8]
M.R. Sorensen, M. Brandbyge, K.W. Jacobsen, Mechanical deformation of atomic-scale metallic contacts: Structure and mechanisms, Phys. Rev. B 57 (1998) 3283–3294.
DOI: 10.1103/physrevb.57.3283
Google Scholar
[9]
Y. Shimomura, R. Nishiguchi, Vacancy clustering to faulted loop, stacking fault tetrahedron and void in fcc metals, Radiat. Eff. Defect Solid 141 (1997) 311–324.
DOI: 10.1080/10420159708211578
Google Scholar
[10]
R. Nishiguchi, Y. Shimomura, Computer simulation of the clustering of small vacancies in nickel, Comput. Mater. Sci. 14 (1999) 91–96.
DOI: 10.1016/s0927-0256(98)00078-0
Google Scholar
[11]
Y.N. Osetsky, M. Victoria, A. Serra, S.I. Golubov, V. Priego, Computer simulation of vacancy and interstitial clusters in bcc and fcc metals, J. Nucl. Mater. 251 (1997) 34–48.
DOI: 10.1016/s0022-3115(97)00255-9
Google Scholar
[12]
Y.N. Osetsky, D.J. Bacon, B.N. Singh, B. Wirth, Atomistic study of the generation, interaction, accumulation and annihilation of cascade-induced defect clusters, J. Nucl. Mater. 307–311 (2002) 852–861.
DOI: 10.1016/s0022-3115(02)01094-2
Google Scholar
[13]
C. Varvenne, O. Mackain, E. Clouet, Vacancy clustering in zirconium: An atomic-scale study, Acta Mater. 78 (2014) 65–77.
DOI: 10.1016/j.actamat.2014.06.012
Google Scholar
[14]
C. Reina, J. Marian, M. Ortiz, Nanovoid nucleation by vacancy aggregation and vacancy-cluster coarsening in high-purity metallic single crystals, Phys. Rev. B 84 (2011) 104117.
DOI: 10.1103/physrevb.84.104117
Google Scholar
[15]
S.L. Di, Z.W. Yao, M.R. Daymond, F. Gao, Molecular dynamics simulations of irradiation cascades in alpha-zirconium under macroscopic strain, Nucl. Instr. Meth. Phys. Res. Sect. B 303 (2013) 95–99.
DOI: 10.1016/j.nimb.2013.01.048
Google Scholar
[16]
M. Iyer, V. Gavini, Energetics and nucleation of point defects in aluminum under extreme tensile hydrostatic stresses, Phys. Rev. B 89 (2014) 014108.
DOI: 10.1103/physrevb.89.014108
Google Scholar
[17]
E.M. Bringa, S. Traiviratana, M.A. Meyers, Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects, Acta Mater. 58 (2010) 4458–4477.
DOI: 10.1016/j.actamat.2010.04.043
Google Scholar
[18]
Q. Peng, X. Zhang, G. Lu, Structure, mechanical and thermodynamic stability of vacancy clusters in Cu, Modell. Simul. Mater. Sci. Eng. 18 (2010) 055009.
DOI: 10.1088/0965-0393/18/5/055009
Google Scholar
[19]
K. Lounis, H. Zenia, E.H. Megchiche, C. Mijoule, Stability of vacancy clusters in nickel: A molecular statics study, Comput. Mater. Sci. 118 (2016) 279–287.
DOI: 10.1016/j.commatsci.2016.03.026
Google Scholar
[20]
F. Ye, J.M. Liu, K. Tong, Z. Li, H. Che, Effects of uniaxial strain on stability and structural evolution of vacancy clusters in copper, M.K. Lei, Comput. Mater. Sci. 117 (2016) 361–369.
DOI: 10.1016/j.commatsci.2016.02.020
Google Scholar
[21]
S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995) 1–19.
Google Scholar
[22]
M.S. Daw, M.I. Baskes, Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals, Phys. Rev. Lett. 50 (1983) 1285–1288.
DOI: 10.1103/physrevlett.50.1285
Google Scholar
[23]
Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, J.D. Kress, Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations, Phys. Rev. B 63 (2001) 224106.
DOI: 10.1103/physrevb.63.224106
Google Scholar
[24]
M.I. Mendelev, M.J. Kramer, C.A. Becker, M. Asta, Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu, Philos. Mag. 88 (2008) 1723–1750.
DOI: 10.1080/14786430802206482
Google Scholar
[25]
G.J. Ackland, D.J. Bacon, A.F. Calder, T. Harry, Computer simulation of point defect properties in dilute Fe-Cu alloy using a many-body interatomic potential, Philos. Mag. A 75 (1997) 713–732.
DOI: 10.1080/01418619708207198
Google Scholar
[26]
C. Gonzalez, D. Fernandez-Pello, M.A. Cerdeira, S.L. Palacios, R. Iglesias, Helium bubble clustering in copper from first principles, Modell. Simul. Mater. Sci. Eng. 22 (2014) 035019.
DOI: 10.1088/0965-0393/22/3/035019
Google Scholar
[27]
N.Q. Lam, N.V. Doan, L. Dagens, Multiple defects in copper and silver, J. Phys. F: Met. Phys. 15 (1985) 799–808.
DOI: 10.1088/0305-4608/15/4/006
Google Scholar
[28]
J.M. Zhang, X.L. Song, X.J. Zhang, K.W. Xu, The properties and structures of the mono- and the di- vacancy in Cu crystal, J. Phys. Chem. Solids 67 (2006) 714–719.
DOI: 10.1016/j.jpcs.2005.10.174
Google Scholar
[29]
B.P. Uberuaga, R.G. Hagland, A.F. Voter, S.M. Volone, Direct transformation of vacancy voids to stacking fault tetrahedral, Phys. Rev. Lett. 99 (2007) 135501.
DOI: 10.1103/physrevlett.99.135501
Google Scholar