Effects of Uniaxial Strain on the Structures of Vacancy Clusters in FCC Metals

Article Preview

Abstract:

The effects of [001] uniaxial strain on the stable structures and structural evolution of vacancy clusters in fcc metals, Cu, Ni, Al and Fe, have been studied and compared. Under uniaxial strain, the clusters in all these metals tend to align parallel or perpendicular to the strain axis under tensile or compressive strain. Moreover, both the body cluster and the {001} planar cluster become the dominant types. In addition, the stacking fault tetrahedron cluster becomes another dominant type in Al under compressive strain. The cluster structures in Fe are disordered under strain possibly because the pure fcc Fe is thermodynamically unstable under the current simulation condition.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1340-1350

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Sato, T. Yoshiie, Y. Satoh, Q. Xu, E. Kuramoto, M. Kiritani, Point defect production under high internal stress without dislocations in Ni and Cu, Radiat. Eff. Defect Solid 157 (2002) 171–178.

DOI: 10.1080/10420150211403

Google Scholar

[2] K. Sato, T. Yoshiie, Y. Satoh, Q. Xu, Detection of interstitial clusters in neutron irradiated Ni-Hf alloy by perturbed angular correlation and positron annihilation life time measurements, Mater. Trans. 45 (2004) 833–838.

DOI: 10.1016/j.jnucmat.2004.04.065

Google Scholar

[3] V. Gavini, Role of macroscopic deformations in energetics of vacancies in aluminum, Phys. Rev. Lett. 101 (2008) 205503.

DOI: 10.1103/physrevlett.101.205503

Google Scholar

[4] F.E. Fujita, Generation of vacancies in high-speed plastic deformation, Mater. Sci. Eng. A 350 (2003) 216–219.

Google Scholar

[5] S.J. Zinkle, L.L. Snead, Microstructure of copper and nickel irradiated with fission neutrons near 230℃, J. Nucl. Mater. 225 (1995) 123-131.

DOI: 10.1016/0022-3115(94)00670-9

Google Scholar

[6] Y. Chimi, A. Iwase, N. Ishikawa, M. Kobiyama, T. Inami, S. Okuda, Accumulation and recovery of defects in ion-irradiated nanocrystalline gold, J. Nucl. Mater. 297 (2001) 355-357.

DOI: 10.1016/s0022-3115(01)00629-8

Google Scholar

[7] G. Was, Fundamentals of Radiation Materials Science: Metals and Alloys, 1st ed., Springer, New York, Berlin, Heidelberg, (2007).

Google Scholar

[8] M.R. Sorensen, M. Brandbyge, K.W. Jacobsen, Mechanical deformation of atomic-scale metallic contacts: Structure and mechanisms, Phys. Rev. B 57 (1998) 3283–3294.

DOI: 10.1103/physrevb.57.3283

Google Scholar

[9] Y. Shimomura, R. Nishiguchi, Vacancy clustering to faulted loop, stacking fault tetrahedron and void in fcc metals, Radiat. Eff. Defect Solid 141 (1997) 311–324.

DOI: 10.1080/10420159708211578

Google Scholar

[10] R. Nishiguchi, Y. Shimomura, Computer simulation of the clustering of small vacancies in nickel, Comput. Mater. Sci. 14 (1999) 91–96.

DOI: 10.1016/s0927-0256(98)00078-0

Google Scholar

[11] Y.N. Osetsky, M. Victoria, A. Serra, S.I. Golubov, V. Priego, Computer simulation of vacancy and interstitial clusters in bcc and fcc metals, J. Nucl. Mater. 251 (1997) 34–48.

DOI: 10.1016/s0022-3115(97)00255-9

Google Scholar

[12] Y.N. Osetsky, D.J. Bacon, B.N. Singh, B. Wirth, Atomistic study of the generation, interaction, accumulation and annihilation of cascade-induced defect clusters, J. Nucl. Mater. 307–311 (2002) 852–861.

DOI: 10.1016/s0022-3115(02)01094-2

Google Scholar

[13] C. Varvenne, O. Mackain, E. Clouet, Vacancy clustering in zirconium: An atomic-scale study, Acta Mater. 78 (2014) 65–77.

DOI: 10.1016/j.actamat.2014.06.012

Google Scholar

[14] C. Reina, J. Marian, M. Ortiz, Nanovoid nucleation by vacancy aggregation and vacancy-cluster coarsening in high-purity metallic single crystals, Phys. Rev. B 84 (2011) 104117.

DOI: 10.1103/physrevb.84.104117

Google Scholar

[15] S.L. Di, Z.W. Yao, M.R. Daymond, F. Gao, Molecular dynamics simulations of irradiation cascades in alpha-zirconium under macroscopic strain, Nucl. Instr. Meth. Phys. Res. Sect. B 303 (2013) 95–99.

DOI: 10.1016/j.nimb.2013.01.048

Google Scholar

[16] M. Iyer, V. Gavini, Energetics and nucleation of point defects in aluminum under extreme tensile hydrostatic stresses, Phys. Rev. B 89 (2014) 014108.

DOI: 10.1103/physrevb.89.014108

Google Scholar

[17] E.M. Bringa, S. Traiviratana, M.A. Meyers, Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects, Acta Mater. 58 (2010) 4458–4477.

DOI: 10.1016/j.actamat.2010.04.043

Google Scholar

[18] Q. Peng, X. Zhang, G. Lu, Structure, mechanical and thermodynamic stability of vacancy clusters in Cu, Modell. Simul. Mater. Sci. Eng. 18 (2010) 055009.

DOI: 10.1088/0965-0393/18/5/055009

Google Scholar

[19] K. Lounis, H. Zenia, E.H. Megchiche, C. Mijoule, Stability of vacancy clusters in nickel: A molecular statics study, Comput. Mater. Sci. 118 (2016) 279–287.

DOI: 10.1016/j.commatsci.2016.03.026

Google Scholar

[20] F. Ye, J.M. Liu, K. Tong, Z. Li, H. Che, Effects of uniaxial strain on stability and structural evolution of vacancy clusters in copper, M.K. Lei, Comput. Mater. Sci. 117 (2016) 361–369.

DOI: 10.1016/j.commatsci.2016.02.020

Google Scholar

[21] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995) 1–19.

Google Scholar

[22] M.S. Daw, M.I. Baskes, Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals, Phys. Rev. Lett. 50 (1983) 1285–1288.

DOI: 10.1103/physrevlett.50.1285

Google Scholar

[23] Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, J.D. Kress, Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations, Phys. Rev. B 63 (2001) 224106.

DOI: 10.1103/physrevb.63.224106

Google Scholar

[24] M.I. Mendelev, M.J. Kramer, C.A. Becker, M. Asta, Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu, Philos. Mag. 88 (2008) 1723–1750.

DOI: 10.1080/14786430802206482

Google Scholar

[25] G.J. Ackland, D.J. Bacon, A.F. Calder, T. Harry, Computer simulation of point defect properties in dilute Fe-Cu alloy using a many-body interatomic potential, Philos. Mag. A 75 (1997) 713–732.

DOI: 10.1080/01418619708207198

Google Scholar

[26] C. Gonzalez, D. Fernandez-Pello, M.A. Cerdeira, S.L. Palacios, R. Iglesias, Helium bubble clustering in copper from first principles, Modell. Simul. Mater. Sci. Eng. 22 (2014) 035019.

DOI: 10.1088/0965-0393/22/3/035019

Google Scholar

[27] N.Q. Lam, N.V. Doan, L. Dagens, Multiple defects in copper and silver, J. Phys. F: Met. Phys. 15 (1985) 799–808.

DOI: 10.1088/0305-4608/15/4/006

Google Scholar

[28] J.M. Zhang, X.L. Song, X.J. Zhang, K.W. Xu, The properties and structures of the mono- and the di- vacancy in Cu crystal, J. Phys. Chem. Solids 67 (2006) 714–719.

DOI: 10.1016/j.jpcs.2005.10.174

Google Scholar

[29] B.P. Uberuaga, R.G. Hagland, A.F. Voter, S.M. Volone, Direct transformation of vacancy voids to stacking fault tetrahedral, Phys. Rev. Lett. 99 (2007) 135501.

DOI: 10.1103/physrevlett.99.135501

Google Scholar