[1]
R. Boyer, G. Welsch, E.W. Collings, Materials Properties Handbook: Titanium Alloys, ASM International, USA, (1994).
Google Scholar
[2]
R.R. Boyer. An overview on the use of titanium in the aerospace industry. Materials Science and Engineering A, 213(1996): 103~114.
Google Scholar
[3]
V. Alimirzaloo, M.H. Sadeghi, F.R. Biglari. Optimization of the forging of aerofoil blade using the finite element method and fuzzy-Pareto based genetic algorithm. Journal of Mechanical Science and Technology, 26(2012): 1801~1810.
DOI: 10.1007/s12206-012-0429-0
Google Scholar
[4]
M. Zhan, H. Yang and Y. Liu. Deformation characteristic of the precision forging of a blade with a damper platform using 3D FEM analysis. Journal of Materials Processing Technology, 150(2004): 290~299.
DOI: 10.1016/j.jmatprotec.2004.02.062
Google Scholar
[5]
C. Lv, L. Zhang, Z. Mu, and et al. 3D FEM simulation of the multi-stage forging process of a gas turbine compressor blade. Journal of Materials Processing Technology, 198(2008): 463~470.
DOI: 10.1016/j.jmatprotec.2007.07.032
Google Scholar
[6]
Z.M. Hu, T.A. Dean. Aspects of forging of titanium alloys and the production of blade forms. Journal of Materials Processing Technology, 111(2001): 10~19.
DOI: 10.1016/s0924-0136(01)00510-6
Google Scholar
[7]
B. Zhao, Z. Li, H. Hou, et al. Three dimensional FEM simulation of titanium hollow blade forming process. Rare Metal Materials & Engineering, 39(2010): 963~968.
DOI: 10.1016/s1875-5372(10)60106-3
Google Scholar
[8]
A. Kocanda, P. Czyzewski, K.H. Mehdi. Numerical analysis of lateral forces in a die for turbine blade forging. Archives of Civil & Mechanical Engineering, 9(2009): 49~54.
DOI: 10.1016/s1644-9665(12)60068-5
Google Scholar
[9]
L. Huang, R. Zeng, X.T. Zhang, et al. Study on plastic deformation behavior of hot splitting spinning of TA15 titanium alloy. Materials & Design, 58(2014): 465~474.
DOI: 10.1016/j.matdes.2014.02.007
Google Scholar
[10]
G. Zhou, L. Hua, D.S. Qian, et al. Effects of axial rolls motions on radial-axial rolling process for large-scale alloy steel ring with 3D coupled thermo-mechanical FEA. International Journal of Mechanical Sciences, 59(2012): 1~7.
DOI: 10.1016/j.ijmecsci.2012.01.002
Google Scholar
[11]
F. Chen, F.C. Ren, J. Chen, et al. Microstructural modeling and numerical simulation of multi-physical fields for martensitic stainless steel during hot forging process of turbine blade. The International Journal of Advanced Manufacturing Technology, 82(2016).
DOI: 10.1007/s00170-015-7368-8
Google Scholar
[12]
C.L. Hu, H.G. Ou, Z. Zhao. An alternative evaluation method for friction condition in cold forging by ring with boss compression test. Journal of Materials Processing Technology, 30(2015): 18~25.
DOI: 10.1016/j.jmatprotec.2015.04.010
Google Scholar
[13]
Y. Shao, B. Lu, H. Ou, et al. A new approach of preform design for forging of 3D blade based on evolutionary structural optimization. Structural & Multidisciplinary Optimization, 51(2015): 199~211.
DOI: 10.1007/s00158-014-1110-2
Google Scholar
[14]
Q.A. Tai, X.G. Li, Z.H. Li, et al. On the measurement of friction coefficient of Ti-6Al-4V titanium alloy utilizing the hot compression test of ring and FE simulation. Journal of Materials Engineering, 1(2011): 23~26.
DOI: 10.1016/j.triboint.2011.07.001
Google Scholar
[15]
J.P. Wang. A new evaluation to friction analysis for the ring test, New Park Publications, UK, (1973).
Google Scholar
[16]
J.P. Wang, F.L. Lin, B.C. Huang, et al. A new experimental approach to evaluate friction in ring test. Journal of Materials Processing Technology, 197(2008): 68~76.
DOI: 10.1016/j.jmatprotec.2007.06.017
Google Scholar
[17]
S.Y. Luo, D.H. Zhu, L Hua, et al. Effects of process parameters on deformation and temperature uniformity of forged Ti-6Al-4V turbine blade. Journal of Materials Engineering & Performance, 25(2016): 1~13.
DOI: 10.1007/s11665-016-2320-0
Google Scholar