A Description of Preferential Sites for Vacancy Formation on Grain Boundaries in Copper by Structural Unit Model

Article Preview

Abstract:

The preferential sites for vacancies on a series of symmetric tilt grain boundaries in copper have been investigated by molecular dynamics simulation. The regularity of preferential sites for vacancies on these boundaries can be described by the structural unit model. This is essential because of the correspondence between the geometries of the structural units and the local stress field. The vacancies are energetically preferred at the sites with relatively large tensile stress, and these sites are the corner sites of the structural units. Moreover, these preferential sites are mainly related to the structural unit types irrespective of which grain boundary that the structure units locate in. Therefore, the preferential sites for vacancies on various grain boundaries formed by combinations of certain structural units can be readily described and predicted by the structural unit model.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1351-1355

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.J. Zinkle, L.L. Snead, Microstructure of copper and nickel irradiated with fission neutrons near 230 °C, J. Nucl. Mater. 225 (1995) 123-131.

DOI: 10.1016/0022-3115(94)00670-9

Google Scholar

[2] Y. Chimi, A. Iwase, N. Ishikawa, M. Kobiyama, T. Inami, S. Okuda, Accumulation and recovery of defects in ion-irradiated nanocrystalline gold, J. Nucl. Mater. 297 (2001) 355-357.

DOI: 10.1016/s0022-3115(01)00629-8

Google Scholar

[3] G. Was, Fundamentals of Radiation Materials Science: Metals and Alloys, 1st ed., Springer, New York, Berlin, Heidelberg, (2007).

Google Scholar

[4] F.J. Perez-Perez, R. Smith, Modelling radiation effects at grain boundaries in bcc iron, Nucl. Instrum. Meth. B 153 (1999) 136-141.

Google Scholar

[5] F.J. Perez-Perez, R. Smith, Preferential damage at symmetrical tilt grain boundaries in bcc iron, Nucl. Instrum. Meth. B 180 (2001) 322-328.

Google Scholar

[6] M.A. Tschopp, M.F. Horstemeyer, F. Gao, X. Sun, M. Khaleel, Energetic driving force for preferential binding of self-interstitial atoms to Fe grain boundaries over vacancies, Scr. Mater. 24 (2011) 908-911.

DOI: 10.1016/j.scriptamat.2011.01.031

Google Scholar

[7] M.A. Tschopp, K.N. Solanki, F. Gao, X. Sun, M.A. Khaleel, M.F. Horstemeyer, Probing grain boundary sink strength at the nanoscale: Energetics and length scales of vacancy and interstitial absorption by grain boundaries in α-Fe, Phys. Rev. B 85 (2012).

DOI: 10.1103/physrevb.85.064108

Google Scholar

[8] X. Bai, L.J. Vernon, R.G. Hoagland, A.F. Voter, M. Nastasi, B.P. Uberuaga, Role of atomic structure on grain boundary-defect interactions in Cu, Phys. Rev. B 85 (2012) 21403.

DOI: 10.1103/physrevb.85.214103

Google Scholar

[9] X. Bai, B.P. Uberuaga, The influence of grain boundaries on radiation-induced point defect production in materials: a review of atomistic studies, JOM. 65 (2013) 360-373.

DOI: 10.1007/s11837-012-0544-5

Google Scholar

[10] A.P. Sutton and V. Vitek, On the structure of tilt grain boundaries in cubic metals I. symmetrical tilt boundaries, Phil. Trans. R. Soc. Lond. A. 309 (1983) 1-36.

DOI: 10.1098/rsta.1983.0020

Google Scholar

[11] S. Plimpton, Fast Parallel Algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995) 1-19.

Google Scholar

[12] Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, J.D. Kress, Structural stability and lattice defects in copper: Ab initio, tight-binding and embedded-atom calculations, Phys. Rev. B 63 (2001) 224106.

DOI: 10.1103/physrevb.63.224106

Google Scholar

[13] E. Polak, G. Ribiere, Note sur la convergence de methods de directions conjuguees, ESAIM-Math. Model. Num. 3 (1969) 35-43.

DOI: 10.1051/m2an/196903r100351

Google Scholar

[14] A.P. Thompson, S.J. Plimpton, W. Mattson, General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions, J. Chem. Phys. 131 (2009) 154107-1-6.

DOI: 10.1063/1.3245303

Google Scholar

[15] J.W. Cahn, Y. Mishin, A. Suzuki, Coupling grain boundary motion to shear deformation, Acta Mater. 54 (2006) 4953-4975.

DOI: 10.1016/j.actamat.2006.08.004

Google Scholar

[16] P.R.M. van Beers, V.G. Kouznetsova, M.G.D. Geers, M.A. Tschopp, D.L. McDowell, A multiscale model of grain boundary structure and energy: From atomistics to a continuum description, Acta Mater. 82 (2015) 513-529.

DOI: 10.1016/j.actamat.2014.08.045

Google Scholar