[1]
S.J. Zinkle, L.L. Snead, Microstructure of copper and nickel irradiated with fission neutrons near 230 °C, J. Nucl. Mater. 225 (1995) 123-131.
DOI: 10.1016/0022-3115(94)00670-9
Google Scholar
[2]
Y. Chimi, A. Iwase, N. Ishikawa, M. Kobiyama, T. Inami, S. Okuda, Accumulation and recovery of defects in ion-irradiated nanocrystalline gold, J. Nucl. Mater. 297 (2001) 355-357.
DOI: 10.1016/s0022-3115(01)00629-8
Google Scholar
[3]
G. Was, Fundamentals of Radiation Materials Science: Metals and Alloys, 1st ed., Springer, New York, Berlin, Heidelberg, (2007).
Google Scholar
[4]
F.J. Perez-Perez, R. Smith, Modelling radiation effects at grain boundaries in bcc iron, Nucl. Instrum. Meth. B 153 (1999) 136-141.
Google Scholar
[5]
F.J. Perez-Perez, R. Smith, Preferential damage at symmetrical tilt grain boundaries in bcc iron, Nucl. Instrum. Meth. B 180 (2001) 322-328.
Google Scholar
[6]
M.A. Tschopp, M.F. Horstemeyer, F. Gao, X. Sun, M. Khaleel, Energetic driving force for preferential binding of self-interstitial atoms to Fe grain boundaries over vacancies, Scr. Mater. 24 (2011) 908-911.
DOI: 10.1016/j.scriptamat.2011.01.031
Google Scholar
[7]
M.A. Tschopp, K.N. Solanki, F. Gao, X. Sun, M.A. Khaleel, M.F. Horstemeyer, Probing grain boundary sink strength at the nanoscale: Energetics and length scales of vacancy and interstitial absorption by grain boundaries in α-Fe, Phys. Rev. B 85 (2012).
DOI: 10.1103/physrevb.85.064108
Google Scholar
[8]
X. Bai, L.J. Vernon, R.G. Hoagland, A.F. Voter, M. Nastasi, B.P. Uberuaga, Role of atomic structure on grain boundary-defect interactions in Cu, Phys. Rev. B 85 (2012) 21403.
DOI: 10.1103/physrevb.85.214103
Google Scholar
[9]
X. Bai, B.P. Uberuaga, The influence of grain boundaries on radiation-induced point defect production in materials: a review of atomistic studies, JOM. 65 (2013) 360-373.
DOI: 10.1007/s11837-012-0544-5
Google Scholar
[10]
A.P. Sutton and V. Vitek, On the structure of tilt grain boundaries in cubic metals I. symmetrical tilt boundaries, Phil. Trans. R. Soc. Lond. A. 309 (1983) 1-36.
DOI: 10.1098/rsta.1983.0020
Google Scholar
[11]
S. Plimpton, Fast Parallel Algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995) 1-19.
Google Scholar
[12]
Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, J.D. Kress, Structural stability and lattice defects in copper: Ab initio, tight-binding and embedded-atom calculations, Phys. Rev. B 63 (2001) 224106.
DOI: 10.1103/physrevb.63.224106
Google Scholar
[13]
E. Polak, G. Ribiere, Note sur la convergence de methods de directions conjuguees, ESAIM-Math. Model. Num. 3 (1969) 35-43.
DOI: 10.1051/m2an/196903r100351
Google Scholar
[14]
A.P. Thompson, S.J. Plimpton, W. Mattson, General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions, J. Chem. Phys. 131 (2009) 154107-1-6.
DOI: 10.1063/1.3245303
Google Scholar
[15]
J.W. Cahn, Y. Mishin, A. Suzuki, Coupling grain boundary motion to shear deformation, Acta Mater. 54 (2006) 4953-4975.
DOI: 10.1016/j.actamat.2006.08.004
Google Scholar
[16]
P.R.M. van Beers, V.G. Kouznetsova, M.G.D. Geers, M.A. Tschopp, D.L. McDowell, A multiscale model of grain boundary structure and energy: From atomistics to a continuum description, Acta Mater. 82 (2015) 513-529.
DOI: 10.1016/j.actamat.2014.08.045
Google Scholar