Influence of Post Heat Treatment on Microstructure and Mechanical Property of Ti6Al4V Parts Produced by Selective Laser Melting

Article Preview

Abstract:

A preliminary investigation of the post heat treatment for Ti6Al4V tensile specimens fabricated via selective laser melting (SLM) are reported. The resultant microstructure and mechanical behavior at room temperature, normal and parallel to the building direction, was investigated in detail. Moreover, the as-prepared samples were compared with the samples post heat treated at 600°C~800°C for 2 h. It was found that the SLM fabricated samples consisted of long columnar original β grains together with parallel acicular α' martensitic structure dominated in the β matrix, which was observed in the side view, and fully equaixed β grains pattern in the top view. The post heat treatment did not completely disrupt the layered structure, but leading to the acicular α' martensites decomposing into α platelets distributed in a metastable β matrix. Ultimate tensile strength and elongation were analyzed and explained based on the microstructure evolution. After post heat treatment, an increase in elongation was observed for the tensile samples, inducing more ductile like morphology after fracture.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1312-1317

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.P. Kruth, G. Levy, F. Klocke, T.H.C. Childs, CIRP Ann. Manuf. Technol. 56 (2007) 730–759.

Google Scholar

[2] L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, J.P. Kruth, Acta Mater. 58 (2010) 3303-3312.

DOI: 10.1016/j.actamat.2010.02.004

Google Scholar

[3] L. Facchini, E. Magalini, P. Robotti, A. Molinari, S. Hoges, K. Wissenbach, Rapid Prototyping J. 16 (2010) 450–459.

DOI: 10.1108/13552541011083371

Google Scholar

[4] Sercombe, N. Jones, R. Day, A. Kop, Rapid Prototyping J. 14 (2008) 300–304.

Google Scholar

[5] T. Vilaro, C. Colin, J.D. Bartout, Metall. Mater. Trans. A 42A (2011) 3190–3199.

Google Scholar

[6] N. Stefansson, S. Semiatin, D. Eylon, Metall. Mater. Trans. A 33 (2002) 3527–3534.

DOI: 10.1007/s11661-002-0340-x

Google Scholar

[7] S. Semiatin, N. Stefansson, R. Doherty, Metall. Mater. Trans. A 36 (2005) 1372–1376.

Google Scholar

[8] Katzarov, S. Malinov, W. Sha, Metall. Mater. Trans. A – Phys. Metall. Mater. Sci. 33 (2002) 1027–1040.

DOI: 10.1007/s11661-002-0204-4

Google Scholar

[9] R. Dabrowski, Arch. Metall. Mater. 56 (2011) 217–221.

Google Scholar

[10] T. Vilaro, C. Colin, J.D. Bartout, Mater Trans. 42A (2011) 3190-3199.

Google Scholar

[11] Y. Lu, H.B. Tang, Y.L. Fang, D. Liu, H.M. Wang, Mater Des. 37 (2012) 35-63.

Google Scholar

[12] E. Brandl, V. Michailov, B. Viehweger, C. Leyens, Surf. Coat. Technol. 206 (2011) 1120-1129.

Google Scholar

[13] S.Q. Wu, Y.L. Lu, Y.L. Gan, T.T. Huang, C.Q. Zhao, J.J. Lin, S. Guo, J.X. Lin, J. Alloys. Compds. 672 (2016) 643-652.

Google Scholar

[14] B. Vandenbroucke, J.P. Kruth, Rapid Prototyping J. 13 (2006) 196-203.

Google Scholar

[15] L.E. Murr, S.A. Quinones, S.M. Gaytan, M.I. Lopez, A. Rodela, E.Y. Martinez, D.H. Hernandez, E. Martinez, F. Medina, R.B. Wicker, J. Mech. Behav. Biomed. 2 (2009) 20-32.

DOI: 10.1016/j.jmbbm.2008.05.004

Google Scholar

[16] L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, R.B. Wicker, J. Mater. Sci. Technol. 28 (2012) 1-14.

Google Scholar