[1]
S. Zhang, R. Xiao, Yttrium oxide films prepared by pulsed laser deposition, Journal of applied physics, 83 (1998) 3842-3848.
DOI: 10.1063/1.366615
Google Scholar
[2]
V. Swamy, High-temperature powder x-ray diffraction of yttria to melting point, Journal of Materials Research, 14 (1999) 456-459.
DOI: 10.1557/jmr.1999.0065
Google Scholar
[3]
M.H. Cho, D.H. Ko, Y.K. Choi, I.W. Lyo, K. Jeong, T.G. Kim, J.H. Song, C.N. Whang, Structural characteristics of Y2O3 films grown on oxidized Si(111) surface, Journal of Applied Physics, 89 (2001) 1647-1652.
DOI: 10.1063/1.1337920
Google Scholar
[4]
P. Lei, W. Leroy, B. Dai, J. Zhu, X. Chen, J. Han, D. Depla, Study on reactive sputtering of yttrium oxide: Process and thin film properties, Surface & Coatings Technology, 276 (2015) 39-46.
DOI: 10.1016/j.surfcoat.2015.06.052
Google Scholar
[5]
R.J. Gaboriaud, F. Paumier, B. Lacroix, Synthesis, structuring and characterization of rare earth oxide thin films: Modeling of the effects of stress and defects on the phase stability, Thin Solid Films, 553 (2014) 43-46.
DOI: 10.1016/j.tsf.2013.12.035
Google Scholar
[6]
X. Cheng, Z. Qi, G. Zhang, H. Zhou, W. Zhang, M. Yin, Growth and characterization of Y2O3 thin films, Physica B: Condensed Matter, 404 (2009) 146-149.
DOI: 10.1016/j.physb.2008.10.022
Google Scholar
[7]
P. Lei, B. Dai, J. Zhu, X. Chen, G. Liu, Y. Zhu, J. Han, Controllable phase formation and physical properties of yttrium oxide films governed by substrate heating and bias voltage, Ceramics International, 41 (2015) 8921-8930.
DOI: 10.1016/j.ceramint.2015.03.165
Google Scholar
[8]
E.J. Rubio, V.V. Atuchin, V.N. Kruchinin, L.D. Pokrovsky, I.P. Prosvirin, C.V. Ramana, Electronic Structure and Optical Quality of Nanocrystalline Y2O3 Film Surfaces and Interfaces on Silicon, The Journal of Physical Chemistry C, 118 (2014).
DOI: 10.1021/jp502876r
Google Scholar
[9]
F. Lu, H. Guo, S. Guo, Q. He, C. Li, W. Tang, G. Chen, Magnetron sputtered oxidation resistant and antireflection protective coatings for freestanding diamond film IR windows, Diamond and Related Materials, 18 (2009) 244-248.
DOI: 10.1016/j.diamond.2008.09.008
Google Scholar
[10]
A. Pandey, V. Kumar, R.E. Kroon, H.C. Swart, Temperature induced upconversion behaviour of Ho3+-Yb3+ codoped yttrium oxide films prepared by pulsed laser deposition, Journal of Alloys and Compounds, 672 (2016) 190-196.
DOI: 10.1016/j.jallcom.2016.02.131
Google Scholar
[11]
V. Craciun, J. Howard, E. Lambers, R. Singh, D. Craciun, J. Perriere, Low-temperature growth of Y2O3 thin films by ultraviolet-assisted pulsed laser deposition, Applied Physics A, 69 (1999) S535-S538.
DOI: 10.1007/s003390051464
Google Scholar
[12]
R.J. Gaboriaud, F. Paumier, M. Jublot, B. Lacroix, Ion irradiation-induced phase transformation mechanisms in Y2O3 thin films, Nuclear Instruments & Methods in Physics Research, 311 (2013) 86-92.
DOI: 10.1016/j.nimb.2013.06.015
Google Scholar
[13]
C.D. Wagner, L.E. Davis, M.V. Zeller, J.A. Taylor, R.H. Raymond, L.H. Gale, Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis, Surface & Interface Analysis, 3 (2004) 211-225.
DOI: 10.1002/sia.740030506
Google Scholar
[14]
R.J. Gaboriaud, F. Paumier, B. Lacroix, Disorder-order phase transformation in a fluorite-related oxide thin film: In-situ X-ray diffraction and modelling of the residual stress effects, Thin Solid Films, 601 (2016) 84-88.
DOI: 10.1016/j.tsf.2015.08.030
Google Scholar
[15]
M. Zinkevich, Thermodynamics of rare earth sesquioxides, Progress in Materials Science, 52 (2007) 597-647.
DOI: 10.1016/j.pmatsci.2006.09.002
Google Scholar
[16]
A. Singh, T. Kutty, S. Sinha, Pulsed laser deposition of corrosion protective yttrium oxide (Y2O3) coating, Journal of Nuclear Materials, 420 (2012) 374-381.
DOI: 10.1016/j.jnucmat.2011.10.028
Google Scholar
[17]
B. Dzhurinskii, D. Gati, N. Sergushin, V. Nefedov, Y.V. Salyn, Simple and coordination compounds. An X-ray photoelectron spectroscopic study of certain oxides, Russ. J. Inorg. Chem, 20 (1975) 2307-2314.
Google Scholar
[18]
R.Y. Rubinstein, A. Shapiro, Discrete event systems: Sensitivity analysis and stochastic optimization by the score function method, John Wiley & Sons Inc, (1993).
Google Scholar
[19]
X. Zhang, H. Yang, A. Tang, Optical, Electrochemical and Hydrophilic Properties of Y2O3 Doped TiO2 Nanocomposite Films, Journal of Physical Chemistry B, 112 (2008) 16271-16279.
DOI: 10.1021/jp806820p
Google Scholar
[20]
S.S. Chopade, S.A. Barve, K.H.T. Raman, N. Chand, M.N. Deo, A. Biswas, S. Rai, G.S. Lodha, G.M. Rao, D.S. Patil, RF plasma MOCVD of Y2O3 thin films: Effect of RF self-bias on the substrates during deposition, Appl Surf Sci, 285 (2013) 524-531.
DOI: 10.1016/j.apsusc.2013.08.087
Google Scholar
[21]
S.A. Barve, Jagannath, N. Mithal, M.N. Deo, N. Chand, B.M. Bhanage, L.M. Gantayet, D.S. Patil, Microwave ECR plasma CVD of cubic Y2O3 coatings and their characterization, Surface and Coatings Technology, 204 (2010) 3167-3172.
DOI: 10.1016/j.surfcoat.2010.03.003
Google Scholar
[22]
S.A. Barve, Jagannath, M.N. Deo, R. Kishore, A. Biswas, L.M. Gantayet, D.S. Patil, Effect of argon ion activity on the properties of Y2O3 thin films deposited by low pressure PACVD, Appl Surf Sci, 257 (2010) 215-221.
DOI: 10.1016/j.apsusc.2010.06.067
Google Scholar
[23]
T.L. Barr, An ESCA study of the termination of the passivation of elemental metals, Journal of Physical Chemistry, 82 (2002) 1801-1810.
DOI: 10.1021/j100505a006
Google Scholar
[24]
T. Gougousi, Z. Chen, Deposition of yttrium oxide thin films in supercritical carbon dioxide, Thin Solid Films, 516 (2008) 6197-6204.
DOI: 10.1016/j.tsf.2007.11.104
Google Scholar
[25]
J.X. Zheng, G. Ceder, T. Maxisch, W.K. Chim, W.K. Choi, Native point defects in yttria and relevance to its use as a high-dielectric-constant gate oxide material: First-principles study, Physical Review B, 73 (2006).
DOI: 10.1103/physrevb.73.104101
Google Scholar
[26]
G.G. Wang, H.L. Qian, Q.T. Li, G.S. Qin, L. Luo, Optimal Preparation and Characterization of Sputtered Y2O3 Films on Sapphire Substrates, Key Engineering Materials, 602-603 (2014) 266-269.
DOI: 10.4028/www.scientific.net/kem.602-603.266
Google Scholar