Deposition and Characterization of Reactive Magnetron Sputtered Tungsten Carbide Films

Article Preview

Abstract:

Tungsten carbide thin films were deposited on silicon (100) substrates by DC reactive magnetron sputtering using CH4 as a carbon source. The microstructure, compressive stress, hardness and tribological behaviors showed great dependences on the rates of CH4 flow (FCH4). Increasing the FCH4 from 2 to 5 sccm, the film exhibited a phase transition from hexagonal-W2C to cubic-WC1-x. Further increasing the FCH4 larger than 10sccm, the film presented amorphous state. As the FCH4 increased, the Raman revealed that the films showed a graphitization trend, meanwhile, the surface of the films became smoother and smoother. The hardness of tungsten carbide films first increased, and then decreased after reaching the maximum 38.5GPa (FCH4=10 sccm). While the sample deposited at 15 sccm obtained the lowest wear rate (2.17×10-6 mm3/Nm) and low coefficient of friction (CoF, 0.24) and still maintained a high hardness of 32.1 GPa. The lowest wear rate could be ascribed to the highest ratio of H3/E2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1505-1511

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Polychronopoulou, C. Rebholz, M.A. Baker, L. Theodorou, N.G. Demas, S.J. Hinder, A.A. Polycarpou, C.C. Doumanidis, K. Böbel, Diamond and Related Materials. 17 (2008) 2054-(2061).

DOI: 10.1016/j.diamond.2008.07.007

Google Scholar

[2] E. Sani, L. Mercatelli, D. Fontani, J. -L. Sans, D. Sciti, Journal of Renewable and Sustainable Energy. 3 (2011) 063107.

Google Scholar

[3] A.V. Bondarev, P.V. Kiryukhantsev-Korneev, D.A. Sidorenko, D.V. Shtansky, Materials & Design. 93 (2016) 63-72.

DOI: 10.1016/j.matdes.2015.12.131

Google Scholar

[4] U. Wiklund, M. Larsson, Wear. 241 (2000) 234-238.

Google Scholar

[5] Y. Pei, D. Galvan, J. Dehosson, Acta Materialia. 53 (2005) 4505-4521.

Google Scholar

[6] Q.N. Meng, M. Wen, F. Mao, N. Nedfors, U. Jansson, W.T. Zheng, Surface and Coatings Technology. 232 (2013) 876-883.

DOI: 10.1016/j.surfcoat.2013.06.116

Google Scholar

[7] K. Zhang, M. Wen, G. Cheng, X. Li, Q.N. Meng, J.S. Lian, W.T. Zheng, Vacuum. 99 (2014) 233-241.

Google Scholar

[8] K. Abdelouahdi, C. Sant, C. Legrand-Buscema, P. Aubert, J. Perrière, G. Renou, P. Houdy, Surface and Coatings Technology. 200 (2006) 6469-6473.

DOI: 10.1016/j.surfcoat.2005.11.015

Google Scholar

[9] M.D. Abad, M.A. Muñoz-Márquez, S. El Mrabet, A. Justo, J.C. Sánchez-López, Surface and Coatings Technology. 204 (2010) 3490-3500.

DOI: 10.1016/j.surfcoat.2010.04.019

Google Scholar

[10] J. Pu, D. He, L. Wang, Applied Surface Science. 357 (2015) 2039-(2047).

Google Scholar

[11] A.A. Voevodin, J.S. Zabinski, Journal of Materials Science. 33 (1998) 319-327.

Google Scholar

[12] A.C. Ferrari, J. Robertson, Physical Review B. 61 (2000) 14095-14107.

Google Scholar

[13] J. Cui, L. Qiang, B. Zhang, X. Ling, T. Yang, J. Zhang, Applied Surface Science. 258 (2012) 5025-5030.

Google Scholar

[14] V. Lughi, D.R. Clarke, Applied Physics Letters. 89 (2006) 241911.

Google Scholar

[15] K. Zhang, M. Wen, S. Wang, R.P. Deng, D. Gall, W.T. Zheng, Surface and Coatings Technology. 258 (2014) 746-753.

Google Scholar

[16] J. Musil, F. Kunc, H. Zeman, H. Poláková, Surface and Coatings Technology. 154 (2002) 304-313.

DOI: 10.1016/s0257-8972(01)01714-5

Google Scholar

[17] S. Guruvenket, D. Li, J.E. Klemberg-Sapieha, L. Martinu, J. Szpunar, Surface and Coatings Technology. 203 (2009) 2905-2911.

DOI: 10.1016/j.surfcoat.2009.03.009

Google Scholar