[1]
Zhuzhou cemented carbide plant. Steel bonded carbide [M]. Metallurgical industry press, Beijing, 1982, pp.1-4.
Google Scholar
[2]
S. Q. Zhou, W. Zhao, W. H. Xiong, Effect of Mo and Mo2C on the microstructure and properties of the cermets based on Ti(C, N). Acta Metallurgica Sinica, 21 (2008) 211-219.
DOI: 10.1016/s1006-7191(08)60041-1
Google Scholar
[3]
A. Mukhopadhyay, B. Basu. Recent developments on WC-based bulk composites. Journal of Materials Science, 46 (2011) 571-589.
DOI: 10.1007/s10853-010-5046-7
Google Scholar
[4]
M. S. Li , The latest progress in foreign steel bonded carbide . Journal of foreign metal materials, 5 (1992) 23-27.
Google Scholar
[5]
Z. Y. Chen, W. Chen, TiC cemented carbide. Journal of cemented carbide, 20 (2003) 197-199.
Google Scholar
[6]
Y. Zhang, Y. Q. You, S. G. Tian, The development status of steel bonded carbide. Journal of heat treatment, 23 (2008) 12-15.
Google Scholar
[7]
J. B. Liu, L. M. Wang, J. H. Liu, The influence of bond relative to organizational structure and performance of TiC steel bonded carbide, The technology of powder metallurgy, 25 (2007) 266-272.
Google Scholar
[8]
S. Y. Liu, C. Y. Zhang, application technology research of GT35 steel bonded carbide. Rare metals and cemented carbide, 145 (2001) 25-30.
Google Scholar
[9]
J. Kübarsepp, H. Klaasen, J. Pirso. Behaviour of TiC-base cermets in different wear conditions. Wear, 249 (2001) 229-234.
DOI: 10.1016/s0043-1648(01)00569-5
Google Scholar
[10]
J. Pirso, M. Viljus, K. Juhani, Three-body abrasive wear of TiC-NiMo cermets. Tribology International, 43 (2010) 340-346.
DOI: 10.1016/j.triboint.2009.06.014
Google Scholar
[11]
J. G. Yang, D. Q. Tan, J. Chen, Carbide]. Central south university press, Changsha, 2012, pp.150-156.
Google Scholar
[12]
X. Yuan, C. Wei, D. Zhang, Characterization and comparison of grain boundary character distributions in cemented carbides with different binder phases. Computational Materials Science, 93 (2014) 144-150.
DOI: 10.1016/j.commatsci.2014.06.022
Google Scholar
[13]
J. Jung, S. Kang. Effect of ultra-fine powders on the microstructure of Ti(CN)-xWC-Ni cermets. Acta Materialia, 52 (2004) 1379-1386.
DOI: 10.1016/j.actamat.2003.11.021
Google Scholar
[14]
Sangho Park, Shinhoo Kang. Toughened ultra-fine (Ti, W)(CN)-Ni cermets. Scripta Materialia, 52 (2005) 129-133.
DOI: 10.1016/j.scriptamat.2004.09.017
Google Scholar
[15]
H. Kwon, C. Suh, W. Kim. Preparation of a highly toughened (Ti, W)C-20Ni cermet through in situ formation of solid solution and WC whiskers. Ceramics International, 41 (2014) 4223-4226.
DOI: 10.1016/j.ceramint.2014.11.031
Google Scholar
[16]
X. Wang, H. E. Xiaoxiang, H. Guo. Influence of Mo on the microstructure and mechanical properties of TiC-based cermets. RARE METALS (English edition), 29 (2010) 346-350.
DOI: 10.1007/s12598-010-0127-y
Google Scholar
[17]
H. M. Ortner, P. Ettmayer, H. Kolaska. The history of the technological progress of hardmetals [J]. International Journal of Refractory Metals & Hard Materials, 44 (2014) 148–159.
DOI: 10.1016/j.ijrmhm.2013.07.014
Google Scholar
[18]
H. D. Yang, H. Hu, The Research on the Cutting Properties of Nano TiN Modified TiC-Based CERMETS Cutters. Key Engineering Materials, 568 (2013) 45-48.
DOI: 10.4028/www.scientific.net/kem.568.45
Google Scholar