[1]
Fan A, Xiao P, Li C, et al. Research situation of TiC-based steel bonded carbide[J]. Powder Metallurgy Technology, (2013).
Google Scholar
[2]
WANG Zhi'an, DAI Haiyang, ZOU Yu. Effects of nanoTiN addition on the microstructure and mechanical properties of TiC based steel bonded carbides[J]. Rare metals (English edition), 2008, 27(1): 5-8.
DOI: 10.1016/s1001-0521(08)60019-4
Google Scholar
[3]
Tsinjan A, Klaasen H, Kubarsepp J, et al. Influence of sintering techniques on the performance characteristics of steel-bonded TiC-based cermets/Paagutustehnoloogia moju terassideainega TiC-kermise T75/14 ookindlusele. [J]. Estonian Journal of Engineering, 2009, 15(4).
DOI: 10.3176/eng.2009.4.05
Google Scholar
[4]
Jiang P, Yuting LV, Cao Y, et al. Microstructure and mechanical properties of GT35 steel-bonded carbide prepared by spark plasma sintering[J]. Ordnance Material Science & Engineering, 2012, 35(6): 70-73.
Google Scholar
[5]
Liu D H, Tang B. Microstructure Research of TiC High Manganese Steel Bonded Carbide[J]. Metal Materials & Metallurgy Engineering, (2012).
Google Scholar
[6]
K. S. Ashok, D. Karabi. Microstructure and abrasive wear study of (W, Ti)C reinforced high-manganese austenitic steel matrix composite. Mater. Lett. 2008, 62: 3947-3950.
DOI: 10.1016/j.matlet.2008.05.049
Google Scholar
[7]
T. T. Jing, F. C. Zhang. The work-hardening behavior of medium manganese steel under impact abrasive wear condition. Mater. Lett. 1997, 31: 275-279.
DOI: 10.1016/s0167-577x(96)00293-5
Google Scholar
[8]
Yan Li, Ning Liu, Xiaobo Zhang, etc. Effect of Mo addition on the microstructure and mechanical properties of ultra-fine grade TiC-TiN-WC-Mo2C-Co Cermets. International Journal of Refractory Metal & Hard Materials, 2008, 26: 190-196.
DOI: 10.1016/j.ijrmhm.2007.05.005
Google Scholar
[9]
Shin S G, Lee J H. Effect of carbide additions on grain growth in TiC-Ni cermets[J]. Metals & Materials International, 2006, 12(12): 57-62.
DOI: 10.1007/bf03027524
Google Scholar
[10]
Matsubara H, Shin S G, Sakuma T. Growth of Carbide Particles in TiC-Ni and TiC-Mo2C-Ni Cermets during Liquid Phase Sintering[J]. Materials Transactions Jim, 1991, 32(10): 951-956.
DOI: 10.2320/matertrans1989.32.951
Google Scholar
[11]
Ning Liu, Yudong Xu, Zhenghong Li, etc. Influence of Molybdenum addition on the microstructure and mechanical properties of TiC-based cermets with nano-TiN modification. Ceramics International, 2003, 29: 919-925.
DOI: 10.1016/s0272-8842(03)00046-4
Google Scholar
[12]
J. Zackrisson, A. Larsson, H. -O. Andren. Microstructure of the Ni binder in a TiC-Mo2C-Ni cermet. Micron, 2001, 32: 707-712.
DOI: 10.1016/s0968-4328(00)00077-9
Google Scholar
[13]
N. Lin, C.H. Wu, Y.H. He, etc. Effect of Mo and Co additions on the microstructure and properties of WC-TiC-Ni cemented carbides. Int. Journal of Refractory and Hard materials, 2012, 20: 107-113.
DOI: 10.1016/j.ijrmhm.2011.07.011
Google Scholar
[14]
Shoufan Rong, Chuang Liu, Jiwei Guo, etc. The influence of Hadifield Steel-bonded TiC preparation process on microstructure and properties. Advanced Material Research, 2011, 291-294: 1825-1830.
DOI: 10.4028/www.scientific.net/amr.291-294.1825
Google Scholar
[15]
ZHOU Shu-zhu, WANG She-quan, WANG Ling-sen, etc. Effect of sintering atmosphere on microstructure and properties of TiC based cermets. J. Cent. South Univ. Technol., 2007, 2: 206-209.
DOI: 10.1007/s11771-007-0041-0
Google Scholar
[16]
S. Cardinal, A. Malchere, V. Garnier, etc. Microstructure and mechanical properties of TiC-TiN based cermets for tools application. Int. Journal of Refractory and Hard materials, 2009, 27: 521-527.
DOI: 10.1016/j.ijrmhm.2008.10.006
Google Scholar
[17]
WANG Xiangqing, HE Xiaoxiang and GUO Hailiang. Influence of Mo on the microstructure and mechanical properties of TiC based cermets. RARE METALS, 2010, 29(4): 346-354.
DOI: 10.1007/s12598-010-0127-y
Google Scholar
[18]
J. C Lasalvia, DK Kim, MA Meyers. Effect of Mo on the microstructure and mechanical properties of TiC-Ni-based cermets produced by combustion synthesis-impact forging technique. Materials Science & Engineering A, 1996, 206(1): 71-80.
DOI: 10.1016/0921-5093(95)09994-8
Google Scholar
[19]
Zhi Wang, Tao Lin, Xinbo He, etc. Microstructure and properties of TiC-high manganese steel cermet prepared by different sintering processes. Journal of Alloy and Compounds, 2015, 650: 918-924.
DOI: 10.1016/j.jallcom.2015.08.047
Google Scholar
[20]
S. Q. Zhou, W. Zhao, W. H. Xiong, etc. Effect of Mo and Mo2C on the Microstructure and properties of the Cermets Based on Ti(C, N). Acta Metal. Sin. (Engl. Lett. ), 2008, 21(3): 211-219.
DOI: 10.1016/s1006-7191(08)60041-1
Google Scholar
[21]
Xiong J, Guo Z, Shen B, et al. The effect of WC, Mo2C, TaC content on the microstructure and properties of ultra-fine TiC0. 7N0. 3 cermet. Materials & Design, 2007, 28(5): 1689-1694.
DOI: 10.1016/j.matdes.2006.03.005
Google Scholar
[22]
Stewart T L, Plucknett K P. The effects of Mo2C additions on the microstructure and sliding wear of TiC0. 3N0. 7-Ni3Al cermets. International Journal of Refractory Metals & Hard Materials, 2015, 50: 227-239.
DOI: 10.1016/j.ijrmhm.2015.01.013
Google Scholar
[23]
Li G P, Chen W, Sun L H, et al. The Influence of Cylindrical Grinding Medium on Particle Size and Mechanical Properties of TiC Steel Bonded Carbide[J]. Materials Science Forum, 2016, 849: 781-787.
DOI: 10.4028/www.scientific.net/msf.849.781
Google Scholar
[24]
Park J J, Hong S M, Lee M K, et al. Effects of metal additions on refinement behavior of TiC particles during a very high speed milling process[J]. Powder Technology, 2013, 249(11): 126-133.
DOI: 10.1016/j.powtec.2013.07.006
Google Scholar
[25]
G P Li, W Chen, LH Sun, et al. Effect of Mo content on the microstructure and mechanical properties of TiC steel bonded carbide [C]. 2nd Annual International Conference on Advanced Material Engineering, (2016).
DOI: 10.2991/ame-16.2016.66
Google Scholar