[1]
B. Mattia , M Vincenzo. Sglavo, Chromium and vanadium carbide and nitride coatings obtained by TRD techniques on UNI 42CrMoS4 (AISI 4140) steel, Surf. Coat. Technol. 286 (2016) 319-326.
DOI: 10.1016/j.surfcoat.2015.12.063
Google Scholar
[2]
Y.P. Song, H.G. Wang, High speed sliding wear behavior of recycled WCP-reinforced ferrous matrix composites fabricated by centrifugal cast, Wear. 276-277 (2012) 105-110.
DOI: 10.1016/j.wear.2011.12.017
Google Scholar
[3]
Š. Houdkova, M. Kašparova, Experimental study of indentation fracture toughness in HVOF sprayed hardmetal coatings, Eng. Fract. Mech. 110 (2013) 468-476.
DOI: 10.1016/j.engfracmech.2013.05.001
Google Scholar
[4]
G.D. Quinn, Ceramics: fracture toughness testing, Reference Module in Materials Science and Materials Engineering (2016).
DOI: 10.1016/b978-0-12-803581-8.03413-5
Google Scholar
[5]
Y.H. Feng, T.H. Zhang, Determination of fracture toughness of brittle materials by indentation, Acta. Mech. Solida. Sin. 28 (2015) 221-234.
DOI: 10.1016/s0894-9166(15)30010-0
Google Scholar
[6]
C. Wang, J.M. Pureza, Y.Q. Yang, Y.W. Chung, Investigation of hardness and fracture toughness properties of Fe/VC multilayer coatings with coherent interfaces, Surf. Coat. Technol. 288 (2016) 179-184.
DOI: 10.1016/j.surfcoat.2016.01.025
Google Scholar
[7]
D.G. Lee, K. Lee, S. Lee, Effects of tempering on microstructure, hardness, and fracture toughness of VC/steel surface composite fabricated by high-energy electron beam irradiation, Surf. Coat. Technol. 201 (2006) 1296-1301.
DOI: 10.1016/j.surfcoat.2006.01.053
Google Scholar
[8]
T.K. Roy, Assessing hardness and fracture toughness in sintered zinc oxide ceramics through indentation technique, Mat. Sci. Eng. A. 640 (2015) 267-274.
DOI: 10.1016/j.msea.2015.05.107
Google Scholar
[9]
X. Yang, X.J. Liu, Z.R. Huang, X.M. Yao, G.L. Liu, Vickers indentation crack analysis of solid-phase-sintered silicon carbide ceramics, Ceram. Int. 39 (2013) 841-845.
DOI: 10.1016/j.ceramint.2012.05.095
Google Scholar
[10]
J.J. Swab, J.C. Wright, Application of ASTM C1421 to WC-Co fracture toughness measurement, Int. J. of Refract. Met. H. 58 (2016) 8-13.
DOI: 10.1016/j.ijrmhm.2016.03.007
Google Scholar
[11]
L.S. Zhong, X. Zhang, S.L. Chen, Y.H. Xu, H. Wu, J. Wang, Fe-W-C thermodynamics and in situ preparation of tungsten carbide-reinforced iron-based surface composites by solid-phase diffusion, Int. J. of Refract. Met. H. 57 (2016) 42-49.
DOI: 10.1016/j.ijrmhm.2016.02.001
Google Scholar
[12]
G.R. Anstis, P. Chantikul, B.R. Lawn, D.B. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements, J. Am. Ceram. Soc. 64 (1981) 533-538.
DOI: 10.1111/j.1151-2916.1981.tb10320.x
Google Scholar
[13]
M. T. Laugier, The elastic/plastic indentation of ceramics, J. Mater. Sci. Lett., 4(1985) 1539-1541.
Google Scholar
[14]
K. Niihara, R. Morena, D.P.H. Hasselman, Evaluation of KIC of brittle solids by the indentation method with low crack-to-indent ratios, J. Mater. Sci. Lett. 1(1982) 13-16.
DOI: 10.1007/bf00724706
Google Scholar
[15]
S. Kaur, R. A. Cutler, D. K. Shetty, Short-crack fracture toughness of silicon carbide, J. Am. Ceram. Soc. 92 (2009) 179-185.
DOI: 10.1111/j.1551-2916.2008.02829.x
Google Scholar
[16]
M.T. Laugier, New formula for indentation toughness in ceramics, J. Mater. Sci. Lett. 4 (1987) 355-356.
DOI: 10.1007/bf01729352
Google Scholar
[17]
C.M. Lin, C.M. Chang, J.H. Chen, W.T. Wu, Hardness, toughness and cracking systems of primary (Cr, Fe)23C6 and (Cr, Fe)7C3 carbides in high-carbon Cr-based alloys by indentation, Mat. Sci. Eng. A. 527 (2010) 5038-5043.
DOI: 10.1016/j.msea.2010.04.073
Google Scholar