Preparation and Properties of Copolyesters Fiber with Flame Retardant and Anti-Droplet by In Situ Polymerization

Article Preview

Abstract:

Containing phosphorus compound is widely used in the modification of flame retardant polyester due to the excellent flame retardant properties. But it is difficult to solve the droplet problems, especially the polyester fiber. In this paper the copolyesters and fiber with flame retardant and anti-droplet were prepared using reaction containing phosphorus flame retardant [(6-Oxido-6H-dibenz [c, e] [1, 2] oxaphosphorin-6-yl) methyl] butanedioic acid (DDP) and silica sol by in-situ polymerization. The structure and properties of modification flame retardant were measured by nuclear magnetic resonance (NMR), thermal gravity analysis (TGA). The results indicated that the modification flame retardant was more suitable for polymerization. The TGA, limiting oxygen index (LOI), vertical flame test, and scanning electron microscope (SEM) were devoted to discuss the flame retardant properties. It suggested that the nanoSiO2 particles increased char residue, and the nanoSiO2 particles were conducive to the formation of dense stable carbon layer, inhibiting the expansion of the carbon layer to form holes, the nanoSiO2 particles improved the droplet of copolyester. The highest LOI of copolyester is 34.8±0.1%, the UL94 is V-0 grade. The copolyester fiber has excellent mechanical, flame retardant and anti-droplet. This can meet the requirement of household textile decoration and use.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2338-2346

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Eslami and F. M. Plathe. Structure and mobility of poly(ethylene terephthalate) a molecular dynamics simulation study. Macromolecules (2009) 8241–8250.

DOI: 10.1021/ma901780e

Google Scholar

[2] Å. M. Ronkvist, W, X. Xie, W. H. Lu and R. A. Gross. Cutinase-catalyzed hydrolysis of poly (ethylene terephthalate). Macromolecules (2009) 5128–5138.

DOI: 10.1021/ma9005318

Google Scholar

[3] Y. Z. Wang, X. T. Chen, X. D. Tang and X. H. Du. A new approach for the simultaneous improvement of fire retardancy, tensile strength and melt dripping of poly(ethylene terephthalate). J. Mater. Chem. (2003) 1248-1259.

DOI: 10.1039/b302744a

Google Scholar

[4] X. K. Jing, X. S. Wang, D. M. Guo, Y. Zhang, F. Y. Zhai, X. L. Wang, L. Chen and Y. Z. Wang. The high-temperature self-crosslinking contribution of azobenzene groups to the flame retardance and anti-dripping of copolyesters. J. Mater. Chem. A (2013).

DOI: 10.1039/c3ta11267e

Google Scholar

[5] Y. C. Li, S. Mannen, J. Schulz and J. C. Grunlan. Growth and fire protection behavior of POSS-based multilayer thin films. J. Mater. Chem. (2011) 3060–3069.

DOI: 10.1039/c0jm03752d

Google Scholar

[6] F. Carosio, J. Alongi and G. Malucelli. α-Zirconium phosphate-based nanoarchitectures on polyester fabrics through layer-by-layer assembly. J. Mater. Chem. (2011) 10370–10376.

DOI: 10.1039/c1jm11287b

Google Scholar

[7] Y. C. Li, S. Mannen, A. B. Morgan, S. C. Chang, Y. H. Yang, B. Condon and J. C. Grunlan. Intumescent all-polymer multilayer nanocoating capable of extinguishing flame on fabric. Adv. Mater. (2011) 3926–3931.

DOI: 10.1002/adma.201101871

Google Scholar

[8] L. Chen, C. Ruan, R. Yang and Y. Z. Wang. Phosphorus-containing thermotropic liquid crystalline polymers: a class of efficient polymeric flame retardants. Polym. Chem. (2014) 3737–3749.

DOI: 10.1039/c3py01717f

Google Scholar

[9] C. H. Lin, C. M. Huang, M. W. Wang, S. H. Dai, H. C. Chang and T. Y. Juang. Synthesis of a phosphinated acetoxybenzoic acid and its application in enhancing Tg and flame retardancy of poly(ethylene terephthalate). J. Polym. Sci. Polym. Chem. (2014).

DOI: 10.1002/pola.27017

Google Scholar

[10] X. K. Jing, D. M. Guo, J. B. Zhang, F. Y. Zhai, X. L. Wang, L. Chen and Y. Z. Wang. Thermal Transition Behavior, Thermal Stability, and Flame Retardancy of Low-Melting-Temperature Copolyester: Comonomer Effect. Ind. & Eng. Chem. Res. (2013).

DOI: 10.1021/ie302919n

Google Scholar

[11] L. S. Wang, X. L. Wang and G. L. Yan. Synthesis, characterisation and flame retardance behaviour of poly(ethylene terephthalate) copolymer containing triaryl phosphine oxide. Polym. Degrad. Stabil. (2000) 127–130.

DOI: 10.1016/s0141-3910(00)00050-1

Google Scholar

[12] S. J. Chang, Y. C. Sheen, R. S. Chang and F. C. Chang. The thermal degradation of phosphorus-containing copolyesters. Polym. Degrad. Stabil. (1996) 365–371.

DOI: 10.1016/s0141-3910(96)00064-x

Google Scholar

[13] M. Sato, S. Endo, Y. Araki, G. Matsuoka, S. Gyobu and H. Takeuchi. The flame-retardant polyester fiber: Improvement of hydrolysis resistance. J. Appl. Polym. Sci. (2000) 1134–1138.

DOI: 10.1002/1097-4628(20001031)78:5<1134::aid-app230>3.0.co;2-5

Google Scholar

[14] A. T. Brink, K. Ren and A. G. Stephanus. Polyethylene terephthalate molding composition having reduced flammability, and molded products made therefrom. US 4356281, (1982).

Google Scholar

[15] H. M. Liu, R. Wang and X. Xu. Thermal stability and flame retardancy of PET/magnesium salt composites. Polym. Degrad. Stabil. (2010) 1466–1470.

DOI: 10.1016/j.polymdegradstab.2010.06.023

Google Scholar

[16] H. B. Zhao, L. Chen, J. C. Yang, X. G. Ge and Y. Z. Wang. A novel flame-retardant-free copolyester: cross-linking towards self extinguishing and non-dripping. J. Mater. Chem. (2012) 19849–19857.

DOI: 10.1039/c2jm34376b

Google Scholar

[17] H. B. Zhao, B. W. Liu, X. L. Wang, L. Chen, X. Li. Wang and Y. Z. Wang. A flame-retardant-free and thermo-cross-linkable copolyester: Flame-retardant and anti-dripping mode of action. Polymer (2014) 2394–2403.

DOI: 10.1016/j.polymer.2014.03.044

Google Scholar

[18] H. B. Zhao, X. L. Wang, Y. Guan, X. L. Wang, L. Chen and Y. Z. Wang. Block self-cross-linkable poly(ethylene terephthalate) copolyester via solid-state polymerization: Crystallization, cross-linking, and flame retardance. Polymer (2015) 68–76.

DOI: 10.1016/j.polymer.2015.06.012

Google Scholar

[19] Y. Zhang, L. Chen, J. J. Zhao, H. B. Chen, M. X. He, Y. P. Ni, J. Q. Zhai, X. L. Wang and Y. Z. Wang. A phosphorus-containing PET ionomer: from ionic aggregates to flame retardance and restricted melt-dripping. Polym. Chem. (2014) 1982–(1991).

DOI: 10.1039/c3py01030a

Google Scholar

[20] Y. Zhang, Y. P. Ni, M. X. He, X. L. Wang, L. Chen and Y. Z. Wang. Phosphorus-containing copolyesters: The effect of ionic group and its analogous phosphorus heterocycles on their flame-retardant and anti-dripping performances. Polymer (2015).

DOI: 10.1016/j.polymer.2015.01.030

Google Scholar