Polyaniline Nanofibers Prepared with Binary Oxidant at the Presence of Para-Phenylenediamine

Article Preview

Abstract:

Polyaniline nanofibers were facially synthesized by the chemical polymerization with binary oxidant containing ammonium persulfate and ferric chloride at the presence of para-phenylenediamine. For a better comparison, the polymerization with single oxidant was also carried out. The effect of binary oxidant on the morphology and structure was systematically investigated for better understanding the role of oxidant in the formation of nanostructures. The morphology, chemical structure as well as crystalline and thermal property were characterized by field emission scanning electron microscopy, ultraviolet-visible absorption spectroscopy, Fourier transform infrared and Raman spectroscopy, X-ray diffraction and thermogravimetric analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2354-2359

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Li, Z. Qin, B. Liang, Morphology-dependent capacitive properties of three nanostructured polyanilines through interfacial polymerization in various acidic media, Electrochim. Acta 177 (2015) 343-351.

DOI: 10.1016/j.electacta.2015.03.169

Google Scholar

[2] Z.D. Zujovic, Y. Wang, G. A. Bowmaker, Structure of ultralong polyaniline nanofibers using initiators, Macromolecules 44 (2011) 2735-2742.

DOI: 10.1021/ma102772t

Google Scholar

[3] H. Guan, L. Z. Fan, H. Zhang, Polyaniline nanofibers obtained by interfacial polymerization for high-rate supercapacitors, Electrochim. Acta 56 (2010) 964-968.

DOI: 10.1016/j.electacta.2010.09.078

Google Scholar

[4] H. Ding, M. Wan, Y. Wei, Controlling the diameter of polyaniline nanofibers by adjusting the oxidant redox potential, Adv. Mater. 19 (2007) 465-469.

DOI: 10.1002/adma.200600831

Google Scholar

[5] F. Zeng, Z. Qin, B. Liang, Polyaniline nanostructures tuning with oxidants in interfacial polymerization system, Prog. Nat. Sci. 25 (2015) 512-519.

DOI: 10.1016/j.pnsc.2015.10.002

Google Scholar

[6] C. Su, G. Wang, F. Huang, Effects of synthetic conditions on the structure and electrical properties of polyaniline nanofibers, J. Mater. Sci. 43 (2008) 197-202.

DOI: 10.1007/s10853-007-2133-5

Google Scholar

[7] M. Rani, R. Ramachandran, S. Kabilan, A facile synthesis and characterization of semiconducting p-phenylenediamine–aniline copolymer, Synthetic Met. 160 (2010) 678-684.

DOI: 10.1016/j.synthmet.2010.01.001

Google Scholar

[8] J. Zhao, Z. Qin, T. Li, Influence of acetone on nanostructure and electrochemical properties of interfacial synthesized polyaniline nanofibers, Prog. Nat. Sci. 25 (2015) 316-322.

DOI: 10.1016/j.pnsc.2015.07.003

Google Scholar

[9] M. Trchová, Z. Morávková, M. Bláha, Raman spectroscopy of polyaniline and oligoaniline thin films, Electrochim. Acta 122 (2014) 28-38.

DOI: 10.1016/j.electacta.2013.10.133

Google Scholar

[10] G. Ćirić-Marjanović, M. Trchová, J. Stejskal, The chemical oxidative polymerization of aniline in water: Raman spectroscopy, J. Raman Spectrosc. 39 (2008) 1375-1387.

DOI: 10.1002/jrs.2007

Google Scholar

[11] X. Wang, P. Liu, Improving the electrochemical performance of polyaniline electrode for supercapacitor by chemical oxidative copolymerization with p-phenylenediamine, J. Ind. Eng. Chem. 20 (2014) 1324-1331.

DOI: 10.1016/j.jiec.2013.07.013

Google Scholar

[12] X. Wang, J. Deng, X. Duan, Crosslinked polyaniline nanorods with improved electrochemical performance as electrode material for supercapacitors, J. Mater. Chem. A 2 (2014) 12323-12329.

DOI: 10.1039/c4ta02231a

Google Scholar

[13] Y. Zhao, M. Arowo, W. Wu, Effect of Additives on the Properties of Polyaniline Nanofibers Prepared by High Gravity Chemical Oxidative Polymerization, Langmuir 31 (2015) 5155-5163.

DOI: 10.1021/la504996c

Google Scholar