[1]
Clearfield, A. and Smith, G.D., Crystallography and structure of. alpha. -zirconium bis (monohydrogen orthophosphate) monohydrate. Inorg. Chem. 1969. 8(3): pp.431-436.
DOI: 10.1021/ic50073a005
Google Scholar
[2]
Mosby, B.M., Díaz, A., and Clearfield, A., Surface modification of layered zirconium phosphates: a novel pathway to multifunctional materials. Dalton Trans. 2014. 43(27): pp.10328-10339.
DOI: 10.1039/c4dt00613e
Google Scholar
[3]
Cao, G., Garcia, M.E., Alcala, M., Burgess, L.F., and Mallouk, T.E., Chiral molecular recognition in intercalated zirconium phosphate. J. ACS. 1992. 114(19): pp.7574-7575.
DOI: 10.1021/ja00045a046
Google Scholar
[4]
Bujoli, B., Lane, S.M., Nonglaton, G., Pipelier, M., Leger, J., Talham, D.R., and Tellier, C., Metal phosphonates applied to biotechnologies: a novel approach to oligonucleotide microarrays. Chem Eur J. 2005. 11(7): p.1980-(1988).
DOI: 10.1002/chin.200607298
Google Scholar
[5]
Kumar, C.V. and Chaudhari, A., Proteins immobilized at the galleries of layered α-zirconium phosphate: structure and activity studies. J. A.C.S. 2000. 122(5): pp.830-837.
DOI: 10.1021/ja993310u
Google Scholar
[6]
Curini, M., Rosati, O., and Costantino, U., Heterogeneous catalysis in liquid phase organic synthesis, promoted by layered zirconium phosphates and phosphonates. Curr. Org. Chem. 2004. 8(7): pp.591-606.
DOI: 10.2174/1385272043370735
Google Scholar
[7]
Beyer, F.L., Beck Tan, N.C., Dasgupta, A., and Galvin, M.E., Polymer−Layered Silicate Nanocomposites from Model Surfactants. Chem. Mater. 2002. 14(7): pp.2983-2988.
DOI: 10.1021/cm011639k
Google Scholar
[8]
Gao, E.J., Zhao, S.M., Zhang, D., and Liu, Q.T., Study on the Interaction of Ternary Complex Pd(II)‐2, 2'‐bipyridine‐L‐asparagic acid with DNA. Chin. J. Chem. 2005. 23(1): pp.54-57.
DOI: 10.1002/cjoc.200590012
Google Scholar
[9]
Kim, G.M., Lee, D.H., Hoffmann, B., Kressler, J., and Stöppelmann, G., Influence of nanofillers on the deformation process in layered silicate/polyamide-12 nanocomposites. Polym. J. 2001. 42(3): pp.1095-1100.
DOI: 10.1016/s0032-3861(00)00468-7
Google Scholar
[10]
Casciola, M., Alberti, G., Ciarletta, A., Cruccolini, A., Piaggio, P., and Pica, M., Nanocomposite membranes made of zirconium phosphate sulfophenylenphosphonate dispersed in polyvinylidene fluoride: Preparation and proton conductivity. Solid State Ion. 2005. 176(39): p.2985.
DOI: 10.1016/j.ssi.2005.09.036
Google Scholar
[11]
Casciola, M., Capitani, D., Donnadio, A., Frittella, V., Pica, M., and Sganappa, M., Preparation, Proton Conductivity and Mechanical Properties of Nafion 117–Zirconium Phosphate Sulphophenylphosphonate Composite Membranes †. Fuel Cells. 2009. 9(4): p.381.
DOI: 10.1002/fuce.200800128
Google Scholar
[12]
Pont, K.D., Gérard, J.F., and Espuche, E., Microstructure and properties of styrene-butadiene rubber based nanocomposites prepared from an aminosilane modified synthetic lamellar nanofiller. J. Polym. Sci. Part B Polym. Phys. 2013. 51(13): p.1051.
DOI: 10.1002/polb.23307
Google Scholar
[13]
Wan, C., Qiao, X., Zhang, Y., and Zhang, Y., Effect of different clay treatment on morphology and mechanical properties of PVC-clay nanocomposites. Polym. Test. 2003. 22(02): pp.453-461.
DOI: 10.1016/s0142-9418(02)00126-5
Google Scholar
[14]
Díaz, A., Mosby, B.M., Bakhmutov, V.I., Martí, A.A., Batteas, J.D., and Clearfield, A., Self-Assembled Monolayers Based Upon a Zirconium Phosphate Platform. Chem. Mater. 2013. 25(5): pp.723-728.
DOI: 10.1021/cm303610v
Google Scholar
[15]
Mosby, B.M., Goloby, M., Díaz, A., Bakhmutov, V., and Clearfield, A., Designable Architectures on Nanoparticle Surfaces: Zirconium Phosphate Nanoplatelets as a Platform for Tetravalent Metal and Phosphonic Acid Assemblies. Langmuir. 2014. 30(9): pp.2513-2521.
DOI: 10.1021/la404839n
Google Scholar
[16]
Mario, C., Donatella, C., Anna, D., Giorgio, M., and Monica, P., Organically modified zirconium phosphate by reaction with 1, 2-epoxydodecane as host material for polymer intercalation: synthesis and physicochemical characterization. Inorg Chem. 2010. 49(7): pp.3329-36.
DOI: 10.1021/ic902330n
Google Scholar
[17]
Mejia, A.F., Diaz, A., Pullela, S., Chang, Y. -W., Simonetty, M., Carpenter, C., Batteas, J.D., Mannan, M.S., Clearfield, A., and Cheng, Z., Pickering emulsions stabilized by amphiphilic nano-sheets. Soft Matter. 2012. 8(40): pp.10245-10253.
DOI: 10.1039/c2sm25846c
Google Scholar
[18]
Clearfield, A. and Tindwa, R.M., On the mechanism of ion exchange in zirconium phosphates—XXI Intercalation of amines by α-zirconium phosphate ☆. J. Inorg. Nucl. Chem. 1979. 41(6): pp.871-878.
DOI: 10.1016/0022-1902(79)80283-3
Google Scholar
[19]
Du, Y., Deng, F., Jiang, X., Ji, H., Yu, D., Wang, W., Sun, B., and Zhu, M., Preparation and performance of lipophilic α-zirconium phosphate with high thermal stability and its application in thermal-plastic polymers. Prog. Nat. Sci-Mater. 2015. 25(5): pp.503-511.
DOI: 10.1016/j.pnsc.2015.10.007
Google Scholar
[20]
Alberti, G., Casciola, M., and Costantino, U., Inorganic ion-exchange pellicles obtained by delamination of α-zirconium phosphate crystals. J. Colloid Interface Sci. 1985. 107(107): p.256–263.
DOI: 10.1016/0021-9797(85)90169-9
Google Scholar
[21]
Casciola, M., Capitani, D., Donnadio, A., Munari, G., and Pica, M., Organically modified zirconium phosphate by reaction with 1, 2-epoxydodecane as host material for polymer intercalation: synthesis and physicochemical characterization. Inorg. chem. 2010. 49(7): pp.3329-3336.
DOI: 10.1021/ic902330n
Google Scholar
[22]
Liu, X. -Q., Wang, D. -Y., Wang, X. -L., Chen, L., and Wang, Y. -Z., Synthesis of organo-modified α-zirconium phosphate and its effect on the flame retardancy of IFR poly (lactic acid) systems. Polym. Degrad. Stab. 2011. 96(5): pp.771-777.
DOI: 10.1016/j.polymdegradstab.2011.02.022
Google Scholar
[23]
Horsley, S., Nowell, D., and Stewart, D., The infrared and Raman spectra of α-zirconium phosphate. Spectrochim. Acta Mol. Spectrosc. 1974. 30(2): pp.535-541.
DOI: 10.1016/0584-8539(74)80093-0
Google Scholar
[24]
Pont, K.D., Gérard, J.F., and Espuche, E., Modification of α-ZrP nanofillers by amines of different chain length: Consequences on the morphology and mechanical properties of styrene butadiene rubber based nanocomposites. Eur. Polym. J. 2012. 48(1): pp.217-227.
DOI: 10.1016/j.eurpolymj.2011.11.006
Google Scholar