Functionalization of α-ZrP by 1,2-Epoxypropane for Further Modification

Article Preview

Abstract:

To prepare alpha zirconium phosphate (α-ZrP) with high interlayer distance, grafting ratio and thermal stability, 1,2-epoxypropane was used to modify α-ZrP as the epoxy group reacting with P-OH on the external and internal surfaces of α-ZrP to form P-O-C bonds after small amines pre-intercalation. Different characterization techniques were used, including X-ray Powder Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Thermo-Gravimetric Analysis (TGA) and Carbon Mass Nuclear Magnetic Resonance (13C MAS NMR). The results of XRD confirmed the pre-intercalation of amino-propane and the intercalation of 1,2-epoxypropane, as the interlayer distance increased from 7.5 Å to 16.9 Å and 15.3 Å, respectively. FT-IR and 13C MAS NMR results confirmed the formation of P-O-C bonds between 1,2-epoxypropane and α-ZrP. TGA analysis showed that the grafting ratio of 1,2-epoxypropane was 19.44%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2347-2353

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Clearfield, A. and Smith, G.D., Crystallography and structure of. alpha. -zirconium bis (monohydrogen orthophosphate) monohydrate. Inorg. Chem. 1969. 8(3): pp.431-436.

DOI: 10.1021/ic50073a005

Google Scholar

[2] Mosby, B.M., Díaz, A., and Clearfield, A., Surface modification of layered zirconium phosphates: a novel pathway to multifunctional materials. Dalton Trans. 2014. 43(27): pp.10328-10339.

DOI: 10.1039/c4dt00613e

Google Scholar

[3] Cao, G., Garcia, M.E., Alcala, M., Burgess, L.F., and Mallouk, T.E., Chiral molecular recognition in intercalated zirconium phosphate. J. ACS. 1992. 114(19): pp.7574-7575.

DOI: 10.1021/ja00045a046

Google Scholar

[4] Bujoli, B., Lane, S.M., Nonglaton, G., Pipelier, M., Leger, J., Talham, D.R., and Tellier, C., Metal phosphonates applied to biotechnologies: a novel approach to oligonucleotide microarrays. Chem Eur J. 2005. 11(7): p.1980-(1988).

DOI: 10.1002/chin.200607298

Google Scholar

[5] Kumar, C.V. and Chaudhari, A., Proteins immobilized at the galleries of layered α-zirconium phosphate: structure and activity studies. J. A.C.S. 2000. 122(5): pp.830-837.

DOI: 10.1021/ja993310u

Google Scholar

[6] Curini, M., Rosati, O., and Costantino, U., Heterogeneous catalysis in liquid phase organic synthesis, promoted by layered zirconium phosphates and phosphonates. Curr. Org. Chem. 2004. 8(7): pp.591-606.

DOI: 10.2174/1385272043370735

Google Scholar

[7] Beyer, F.L., Beck Tan, N.C., Dasgupta, A., and Galvin, M.E., Polymer−Layered Silicate Nanocomposites from Model Surfactants. Chem. Mater. 2002. 14(7): pp.2983-2988.

DOI: 10.1021/cm011639k

Google Scholar

[8] Gao, E.J., Zhao, S.M., Zhang, D., and Liu, Q.T., Study on the Interaction of Ternary Complex Pd(II)‐2, 2'‐bipyridine‐L‐asparagic acid with DNA. Chin. J. Chem. 2005. 23(1): pp.54-57.

DOI: 10.1002/cjoc.200590012

Google Scholar

[9] Kim, G.M., Lee, D.H., Hoffmann, B., Kressler, J., and Stöppelmann, G., Influence of nanofillers on the deformation process in layered silicate/polyamide-12 nanocomposites. Polym. J. 2001. 42(3): pp.1095-1100.

DOI: 10.1016/s0032-3861(00)00468-7

Google Scholar

[10] Casciola, M., Alberti, G., Ciarletta, A., Cruccolini, A., Piaggio, P., and Pica, M., Nanocomposite membranes made of zirconium phosphate sulfophenylenphosphonate dispersed in polyvinylidene fluoride: Preparation and proton conductivity. Solid State Ion. 2005. 176(39): p.2985.

DOI: 10.1016/j.ssi.2005.09.036

Google Scholar

[11] Casciola, M., Capitani, D., Donnadio, A., Frittella, V., Pica, M., and Sganappa, M., Preparation, Proton Conductivity and Mechanical Properties of Nafion 117–Zirconium Phosphate Sulphophenylphosphonate Composite Membranes †. Fuel Cells. 2009. 9(4): p.381.

DOI: 10.1002/fuce.200800128

Google Scholar

[12] Pont, K.D., Gérard, J.F., and Espuche, E., Microstructure and properties of styrene-butadiene rubber based nanocomposites prepared from an aminosilane modified synthetic lamellar nanofiller. J. Polym. Sci. Part B Polym. Phys. 2013. 51(13): p.1051.

DOI: 10.1002/polb.23307

Google Scholar

[13] Wan, C., Qiao, X., Zhang, Y., and Zhang, Y., Effect of different clay treatment on morphology and mechanical properties of PVC-clay nanocomposites. Polym. Test. 2003. 22(02): pp.453-461.

DOI: 10.1016/s0142-9418(02)00126-5

Google Scholar

[14] Díaz, A., Mosby, B.M., Bakhmutov, V.I., Martí, A.A., Batteas, J.D., and Clearfield, A., Self-Assembled Monolayers Based Upon a Zirconium Phosphate Platform. Chem. Mater. 2013. 25(5): pp.723-728.

DOI: 10.1021/cm303610v

Google Scholar

[15] Mosby, B.M., Goloby, M., Díaz, A., Bakhmutov, V., and Clearfield, A., Designable Architectures on Nanoparticle Surfaces: Zirconium Phosphate Nanoplatelets as a Platform for Tetravalent Metal and Phosphonic Acid Assemblies. Langmuir. 2014. 30(9): pp.2513-2521.

DOI: 10.1021/la404839n

Google Scholar

[16] Mario, C., Donatella, C., Anna, D., Giorgio, M., and Monica, P., Organically modified zirconium phosphate by reaction with 1, 2-epoxydodecane as host material for polymer intercalation: synthesis and physicochemical characterization. Inorg Chem. 2010. 49(7): pp.3329-36.

DOI: 10.1021/ic902330n

Google Scholar

[17] Mejia, A.F., Diaz, A., Pullela, S., Chang, Y. -W., Simonetty, M., Carpenter, C., Batteas, J.D., Mannan, M.S., Clearfield, A., and Cheng, Z., Pickering emulsions stabilized by amphiphilic nano-sheets. Soft Matter. 2012. 8(40): pp.10245-10253.

DOI: 10.1039/c2sm25846c

Google Scholar

[18] Clearfield, A. and Tindwa, R.M., On the mechanism of ion exchange in zirconium phosphates—XXI Intercalation of amines by α-zirconium phosphate ☆. J. Inorg. Nucl. Chem. 1979. 41(6): pp.871-878.

DOI: 10.1016/0022-1902(79)80283-3

Google Scholar

[19] Du, Y., Deng, F., Jiang, X., Ji, H., Yu, D., Wang, W., Sun, B., and Zhu, M., Preparation and performance of lipophilic α-zirconium phosphate with high thermal stability and its application in thermal-plastic polymers. Prog. Nat. Sci-Mater. 2015. 25(5): pp.503-511.

DOI: 10.1016/j.pnsc.2015.10.007

Google Scholar

[20] Alberti, G., Casciola, M., and Costantino, U., Inorganic ion-exchange pellicles obtained by delamination of α-zirconium phosphate crystals. J. Colloid Interface Sci. 1985. 107(107): p.256–263.

DOI: 10.1016/0021-9797(85)90169-9

Google Scholar

[21] Casciola, M., Capitani, D., Donnadio, A., Munari, G., and Pica, M., Organically modified zirconium phosphate by reaction with 1, 2-epoxydodecane as host material for polymer intercalation: synthesis and physicochemical characterization. Inorg. chem. 2010. 49(7): pp.3329-3336.

DOI: 10.1021/ic902330n

Google Scholar

[22] Liu, X. -Q., Wang, D. -Y., Wang, X. -L., Chen, L., and Wang, Y. -Z., Synthesis of organo-modified α-zirconium phosphate and its effect on the flame retardancy of IFR poly (lactic acid) systems. Polym. Degrad. Stab. 2011. 96(5): pp.771-777.

DOI: 10.1016/j.polymdegradstab.2011.02.022

Google Scholar

[23] Horsley, S., Nowell, D., and Stewart, D., The infrared and Raman spectra of α-zirconium phosphate. Spectrochim. Acta Mol. Spectrosc. 1974. 30(2): pp.535-541.

DOI: 10.1016/0584-8539(74)80093-0

Google Scholar

[24] Pont, K.D., Gérard, J.F., and Espuche, E., Modification of α-ZrP nanofillers by amines of different chain length: Consequences on the morphology and mechanical properties of styrene butadiene rubber based nanocomposites. Eur. Polym. J. 2012. 48(1): pp.217-227.

DOI: 10.1016/j.eurpolymj.2011.11.006

Google Scholar