Preparation and Characterization of Stimuli-Responsive Poly(N-Isopropylacrylamide)/Ca-Alginate Hydrogel Fiber by Microfluidic Spinning

Article Preview

Abstract:

Smart hydrogel is a kind of new soft and wet material which can be responsive to external stimuli. Hydrogel fiber owning one dimension size can significantly improve response speed and be easily formed into higher-order assemblies. N-isopropylacrylamide/calcium alginate (NIPA/Ca-alginate) as-spun fiber was generated via microfluidic spinning. Then PNIPA/Ca-alginate hydrogel fiber was prepared through off-chip free radical polymerization of NIPA in the presence of Ca-alginate. The structure and morphology of the hydrogel fiber were characterized by FTIR and SEM. The swelling property and temperature-/pH-response behaviors were also investigated. The PNIPA/Ca-alginate hydrogel fiber had a 3D network porous structure. The thinner the hydrogel fiber, the faster the swelling speed was. Meanwhile, the hydrogel fiber exhibited temperature and pH response.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2360-2365

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.S. Braze, N.A. Peppas, Macromolecules 28 (1995) 8016-8020.

Google Scholar

[2] J. Zhang, R. Xie, S. B. Zhang et al. Polymer 50 (2009) 2516-2525.

Google Scholar

[3] J. Ma, Y. Xu, B. Fan et al. Eur. Polym. J. 43 (2007) 2221-2228.

Google Scholar

[4] T. Tanaka, D.J. Fillmore J. Chem. Phys. 70 (1979) 1214-1218.

Google Scholar

[5] J. Fei, Z. Zhang, L. Gu , Polym. int. 51 (2002) 502-509.

Google Scholar

[6] H. Chen, Y.L. Hsieh, J. Polym. Sci., Part A: Polym. Chem. 42 (2004) 6331-6339.

Google Scholar

[7] W. Jeong, J. Kim, S. Kim et al. Lab. Chip 4 (2004) 576-580.

Google Scholar

[8] B.G. Chung, K.H. Lee, A Khademhosseini et al, Lab. Chip 12 (2012) 45-59.

Google Scholar

[9] M.A. Daniele, D.A. Boyd, A.A. Adams et al. Adv. healthc. mater. 4 (2015) 11-28.

Google Scholar

[10] S.J. Shin, J.Y. Park, J.Y. Lee et al. Langmuir 23 (2007) 9104-9108.

Google Scholar

[11] E. Kang, S.J. Shin, K.H. Lee et al. Lab. Chip 10 (2010) 1856-1861.

Google Scholar

[12] C.M. Hwang, A. Khademhosseini, Y. Park et al. Langmuir 24 (2008) 6845-6851.

Google Scholar

[13] K.H. Lee, S.J. Shin, C.B. Kim et al. Lab. Chip 10 (2010) 1328-1334.

Google Scholar

[14] K.H. Lee, S.J. Shin, Y. Park et al. Small 5 (2009) 1264-1268.

Google Scholar

[15] J.H. Jung, C.H. Choi, S. Chung et al. Lab. Chip 9 (2009) 2596-2602.

Google Scholar

[16] H. Onoe, T. Okitsu, A. Itou et al. Nat. mater. 12 (2013) 584-590.

Google Scholar

[17] Y. Cheng, F. Zheng, J. Lu et al. Adv. Mater. 26 (2014) 5184-5190.

Google Scholar

[18] H.K. Ju, S.Y. Kim, S.J. Kim et al. J. Appl. Polym. Sci. 83 (2002) 1128-1139.

Google Scholar

[19] G.Q. Zhang, L.S. Zha, M.H. Zhou et al. J. Appl. Polym. Sci. 97 (2005) 1931-(1940).

Google Scholar

[20] M.R. Guilherme, M.R. De Moura, E. Radovanovic et al. Polymer 46 (2005) 2668-2674.

Google Scholar

[21] M.R. Moura, F.A. Aouada, M.R. Guilherme et al. Polym. test. 25 (2006) 961-969.

Google Scholar

[22] T.G. Park, H.K. Choi, Macromol. rapid commun. 19 (1998) 167-172.

Google Scholar

[23] Y. Hu, S. Wang, A. Abbaspourrad et al. Langmuir 31 (2015) 1885-1891.

Google Scholar

[24] J.Y. Sun, X. Zhao, W.R.K. Illeperuma et al. Nature 489 (2012) 133-136.

Google Scholar