Effect of Y2O3 Coating on the Interface and Mechanical Properties of SiC Fiber Reinforced GH4738 Composites

Article Preview

Abstract:

To prevent the strong interfacial reactions in SiC fiber reinforced nickel-based superalloys matrix composites, yttrium oxide (Y2O3) was used as the barrier coating by reaction magnetron sputtering method. Compared with the composites without coating, after the high temperature hot isostatic pressing (HIP), Y2O3 coating effectively protected the SiC fibers from the interfacial reactions, and no element diffusion can be observed between the fibers and the matrix. The elevated temperature tensile tests were performed on both SiC/GH4738 and SiC/Y2O3/GH4738 composite. The results indicated that the strength of the composites with Y2O3 coating can increase about 35% in comparison with the composites without coating.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

604-608

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. R. Subramanian, S. Krishnamurthy, S. T. Keller, M. G. Mendiratta, Processing of continuously reinforced Ti-alloy metal matrix composites (MMC) by magnetron sputtering, Mater. Sci. Eng. A 244(1998) 1-10.

DOI: 10.1016/s0921-5093(97)00820-4

Google Scholar

[2] Wu, Meiling, Guo, Fengwei; Li, Ming; Han, Yafang.  Effect of trace strontium addition on microstructure and room temperature fracture toughness of Nb-12Si-22Ti alloys, Materials Science Forum: Special and High Performance Structural Materials. 849(2016).

DOI: 10.4028/www.scientific.net/msf.849.603

Google Scholar

[3] N. Carrere, F. Feyel, S. Kruch, Multi-scale modeling of silicon carbide reinforced titanium MMCs: application to advanced compressor design, Aerosp. Sci. Technol. 7(2003) 307-315.

DOI: 10.1016/s1270-9638(03)00028-2

Google Scholar

[4] D. Bettge, B. Gunther, W. Wedell, P. D. Portella, J. Hemptenmacher, P.W.M. Peters, B. Skrotzki, Mechanical behavior and fatigue damage of a titanium matrix composite reinforced with continuous SiC fibers, Mater. Sci. Eng. A 452-453(2007) 536-544.

DOI: 10.1016/j.msea.2006.10.107

Google Scholar

[5] K. Bhanumurthy, R. Schmid-Fetzer, Interface reactions between silicon carbide and metals (Ni, Cr, Pd, Zr), Composites Part A. 32(2001) 569-574.

DOI: 10.1016/s1359-835x(00)00049-x

Google Scholar

[6] Z. Zhang, J. Teng, W. X. Yuan, F. F. Zhang, G. H. Chen, Kinetic study of interfacial solid state reactions in the Ni/4H-SiC contact, Appl. Surf. Sci. 255(2009) 6939-6944.

DOI: 10.1016/j.apsusc.2009.03.018

Google Scholar

[7] L. Zhang, N. L. Shi, J. Gong, C. Sun, Preparation of SiC fiber reinforced nickel matrix composite, J. Mater. Sci. Technol. 28(2011) 234-240.

Google Scholar

[8] G. V. Samsonov, A. D. Panasyuk, V. A. Bespyatyi, A. I. Belomyl'tsev, L. V. D'yakonova, Protective coatings for SiC fibers in contact with nickel alloys, Powder Metall. Met. C. 14(1975) 213-215.

DOI: 10.1007/bf00801725

Google Scholar

[9] V. H. Mudavakkat, V. V. Atuchin, V. N. Kruchinin, A. Kayani, C. V. Ramana, Structure, morphology and optical properties of nanocrystalline yttrium oxide(Y2O3) thin films, Opt. Mater. 34(2012) 893-900.

DOI: 10.1016/j.optmat.2011.11.027

Google Scholar

[10] V. H. Mudavakkat, M. Noor-A-Alarm, K. Kamala Bharayhi, S. AlFaify, A. Kayani, C. V. Ramana, Structure and AC conductivity of nanocrystalline yttrium oxide thin films, Thin Solid Films. 519(2011) 7947-7950.

DOI: 10.1016/j.tsf.2011.04.222

Google Scholar

[11] S. S. Chopade, C. Nayak, D. Bhattacharyya, S. N. Jha, R. B. Tokas, N. K. Sahoo, D. S. Patil, EXAFS study on yttrium oxide thin films deposited by RF plasma enhanced MOCVD under the influence of varying RF self-bisa, Appli. Surf. Sci. 314(2014).

DOI: 10.1016/j.apsusc.2014.06.052

Google Scholar

[12] S. X. Guo, C. F. Hu, H. Gao, Y. Tanaka, Y. Kagawa, SiC(SCS-6) fiber-reinforced Ti3AlC2 matrix composites: interfacial characterization and mechanical behavior, J. Eur. Ceram. Soc. 35 (2015) 1375-1384.

DOI: 10.1016/j.jeurceramsoc.2014.11.034

Google Scholar

[13] P. H. Li, Y. Zhang, G. Q. Zhang, S. H. Fu, T. Wang, X. H. Qu, Preparation and analyze of SiC fiber reinforced GH4738 composite, Mater. Res. Innov. 18(2014) 499-504.

DOI: 10.1179/1432891714z.000000000727

Google Scholar

[14] X. Luo, Y. Y. Yang, Y. J. Yu, X. R. Wang, B. Huang, Y. Chen, Effect of Mo coating on the interface and mechanical properties of SiC fiber reinforced Ti6Al4V composites, Mater. Sci. Eng. A 550(2012) 286-292.

DOI: 10.1016/j.msea.2012.04.072

Google Scholar

[15] H. T. Liu, H. F. Cheng, J. Wang, G. P. Tang, R. C. Che, Q. S. Ma, Effects of the fiber surface characteristics on the interfacial microstructure and mechanical properties of the KD SiC fiber reinforced SiC matrix composites, Mater. Sci. Eng. A 525(2009).

DOI: 10.1016/j.msea.2009.07.018

Google Scholar

[16] Y. Wang, H. T. Liu, H. F. Cheng, J. Wang, Effective fugitive carbon coatings for the strength improvement of 3D NextelTM 440/aluminosilicate composites, Mater. Lett. 126(2014) 236-239.

DOI: 10.1016/j.matlet.2014.04.006

Google Scholar