[1]
B. Cantor, I. T. H. Chang, P. Knight, A. J. B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A. 375-377 (2004) 213-218.
DOI: 10.1016/j.msea.2003.10.257
Google Scholar
[2]
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater. 6 (2004) 299-303.
DOI: 10.1002/adem.200300567
Google Scholar
[3]
M. H. Tsai Physical Properties of High Entropy Alloys. Entropy. 15 (2013) 5338-5345.
DOI: 10.3390/e15125338
Google Scholar
[4]
J. Y. He, H. Wang, H. L. Huang, X. D. Xu, M. W. Chen, Y. Wu, X. J. Liu, T. G. Nieh, K. An, Z. P. Lu. A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 102 (2016) 187-196.
DOI: 10.1016/j.actamat.2015.08.076
Google Scholar
[5]
L. Jiang, H. Jiang, Y. P. Lu, T. M. Wang, Z. Q. Cao, T. J. Li. Mechanical Properties Improvement of AlCrFeNi2Ti0. 5 High Entropy Alloy through Annealing Design and its Relationship with its Particle-reinforced Microstructures. J. Mater. Sci. Technol. 31 (2015).
DOI: 10.1016/j.jmst.2014.09.011
Google Scholar
[6]
Z. Wang, S. Guo, Q. Wang, Z. Liu, J. Wang, Y. Yang, C. T. Liu. Nanoindentation characterized initial creep behavior of a high-entropy-based alloy CoFeNi. Intermetallics. 53 (2014) 183-186.
DOI: 10.1016/j.intermet.2014.05.007
Google Scholar
[7]
P. Kozelj, S. Vrtnik, A. Jelen, S. Jazbec, Z. Jaglicic, S. Maiti, M. Feuerbacher, W. Steurer, J. Dolinsek. Discovery of a superconducting high-entropy alloy. Phys Rev Lett. 113 (2014) 107001.
DOI: 10.1103/physrevlett.113.107001
Google Scholar
[8]
Y. P. Lu, Y. Dong, S. Guo, L. Jiang, H. J. Kang, T. M. Wang, B. Wen, Z. J. Wang, J. C. Jie, Z. Q. Cao, H. H. Ruan, T. J. Li. A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci Rep. 4 (2014) 6200.
DOI: 10.1038/srep06200
Google Scholar
[9]
W. H. Liu, Z. P. Lu, J. Y. He, J. H. Luan, Z. J. Wang, B. Liu, Y. Liu, M. W. Chen, C. T. Liu Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater. 116 (2016) 332-342.
DOI: 10.1016/j.actamat.2016.06.063
Google Scholar
[10]
N. D. Stepanov, D. G. Shaysultanov, G. A. Salishchev, M. A. Tikhonovsky, E. E. Oleynik, A. S. Tortika, O. N. Senkov. Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys. J Alloys Compd. 628 (2015).
DOI: 10.1016/j.jallcom.2014.12.157
Google Scholar
[11]
F. He, Z. J. Wang, P. Cheng, Q. Wang, J. J. Li., Y. Y. Dang, J. C. Wang, C. T. Liu. Designing eutectic high entropy alloys of CoCrFeNiNbx. J Alloys Compd. 656 (2016) 284-289.
DOI: 10.1016/j.jallcom.2015.09.153
Google Scholar
[12]
H. Jiang, H.Z. Zhang, T.D. Huang, Y. P Lu , T.M. Wang, T.J. Li. Microstructures and mechanical properties of Co2MoxNi2VWx eutectic high entropy alloys. Mater Des. 109 (2016) 539-546.
DOI: 10.1016/j.matdes.2016.07.113
Google Scholar
[13]
H. Jiang, L. Jiang, K.M. Han, Y.P. Lu, T. M Wang, Z. Q Cao, Li T. J. Effects of Tungsten on Microstructure and Mechanical Properties of CrFeNiV0. 5Wx and CrFeNi2V0. 5Wx High-Entropy Alloys. J Mater Eng Perform. 24 (2015) 4594.
DOI: 10.1007/s11665-015-1767-8
Google Scholar
[14]
Y.L. Choua, J.W. Yeh, Shih H. C. The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1. 5CrFeNi1. 5Ti0. 5Mox in aqueous environments. Corros Sci. 52 (2010) 2571-2581.
DOI: 10.1016/j.corsci.2010.04.004
Google Scholar
[15]
Y. J. Hsu, W. C. Chiang, J. K. Wu. Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3. 5% sodium chloride solution. Mater Chem Phys. 92 (2005) 112-117.
DOI: 10.1016/j.matchemphys.2005.01.001
Google Scholar
[16]
M. A. Ameer, A. M. Fekry, F. E. T. Heakal Electrochemical behaviour of passive films on molybdenum-containing austenitic stainless steels in aqueous solutions. Electrochimi Acta. 50 (2004) 43-49.
DOI: 10.1016/j.electacta.2004.07.011
Google Scholar