[1]
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater. 6 (2004) 299–303.
DOI: 10.1002/adem.200300567
Google Scholar
[2]
B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A. 375–377 (2004) 213-218.
DOI: 10.1016/j.msea.2003.10.257
Google Scholar
[3]
C.C. Tung, J.W. Yeh, T. t. Shun, S.K. Chen, Y.S. Huang, H.C. Chen, On the elemental effect of AlCoCrCuFeNi high-entropy alloy system, Mater. Lett. 61 (2007) 1-5.
DOI: 10.1016/j.matlet.2006.03.140
Google Scholar
[4]
C.Y. Hsu, J.W. Yeh, S.K. Chen, T.T. Shun, Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0. 5Fe alloy with boron addition, Metall. Mater. Trans. A, 35 (2004) 1465-1469.
DOI: 10.1007/s11661-004-0254-x
Google Scholar
[5]
C.J. Tong, M.R. Chen, J.W. Yeh, S.J. Lin, S.K. Chen, T.T. Shun, S.Y. Chang, Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metall. Mater. Trans. A, 36 (2005) 1263-1271.
DOI: 10.1007/s11661-005-0218-9
Google Scholar
[6]
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog Mater Sci, 61 (2014) 1-93.
DOI: 10.1016/j.pmatsci.2013.10.001
Google Scholar
[7]
Y.J. Zhao, J.W. Qiao, S.G. Ma, M.C. Gao, H.J. Yang, M.W. Chen, Y. Zhang, A hexagonal close-packed high-entropy alloy: The effect of entropy, Mater. Des. 96 (2016) 10-15.
DOI: 10.1016/j.matdes.2016.01.149
Google Scholar
[8]
X.W. Qiu, C.G. Liu, Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding, J. Alloys Compd. 553 (2013) 216-220.
DOI: 10.1016/j.jallcom.2012.11.100
Google Scholar
[9]
M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, J.W. Yeh, Microstructure and wear behavior of AlxCo1. 5CrFeNi1. 5Tiy high-entropy alloys, Acta. Mater. 59 (2011) 6308-6317.
DOI: 10.1016/j.actamat.2011.06.041
Google Scholar
[10]
C. Huang, Y. Zhang, J. Shen, R. Vilar, Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V alloy, Surf. Coat. Tech. 206 (2011) 1389-1395.
DOI: 10.1016/j.surfcoat.2011.08.063
Google Scholar
[11]
C. Huang, Y. Zhang, R. Vilar, J. Shen, Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate, Mater. Des. 41 (2012) 338-343.
DOI: 10.1016/j.matdes.2012.04.049
Google Scholar
[12]
K. Zhang, Z. Fu, Effects of annealing treatment on phase composition and microstructure of CoCrFeNiTiAlx high-entropy alloys, Intermetallics. 22 (2012) 24-32.
DOI: 10.1016/j.intermet.2011.10.010
Google Scholar
[13]
Y. Dong, K. Zhou, Y. Lu, X. Gao, T. Wang, T. Li, Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy, Mater. Des. 57 (2014) 67-72.
DOI: 10.1016/j.matdes.2013.12.048
Google Scholar
[14]
X.B. Liu, X.J. Meng, H.Q. Liu, G.L. Shi, S.H. Wu, C.F. Sun, M.D. Wang, L.H. Qi, Development and characterization of laser clad high temperature self-lubricating wear resistant composite coatings on Ti–6Al–4V alloy, Mater. Des. 55 (2014) 404-409.
DOI: 10.1016/j.matdes.2013.09.038
Google Scholar
[15]
Y.C. Lin, Y.H. Cho, Elucidating the microstructural and tribological characteristics of NiCrAlCoCu and NiCrAlCoMo multicomponent alloy clad layers synthesized in situ, Surf. Coat. Tech. 203 (2009) 1694-1701.
DOI: 10.1016/j.surfcoat.2009.01.004
Google Scholar
[16]
X.R. Wang, Z.Q. Wang, P. He, T.S. Lin, Y. Shi, Microstructure and wear properties of CuNiSiTiZr high-entropy alloy coatings on TC11 titanium alloy produced by electrospark-computer numerical control deposition process, Surf. Coat. Tech. 283 (2015).
DOI: 10.1016/j.surfcoat.2015.10.013
Google Scholar
[17]
J.B. Cheng, X.B. Liang, Z.H. Wang, B.S. Xu, Formation and Mechanical Properties of CoNiCuFeCr High-Entropy Alloys Coatings Prepared by Plasma Transferred Arc Cladding Process, Plasma. Chem. Plasma. P. 33 (2013) 979-992.
DOI: 10.1007/s11090-013-9469-1
Google Scholar
[18]
D.L. Yang, F. Qiu, Z.K. Lei, Q.L. Zhao, Q.C. Jiang, The interfacial structure and mechanical properties of Ti5Si3-coated SiCP/Al2014 composites fabricated by powder metallurgy with hot pressing, Mater. Sci. Eng. A. 661 (2016) 217-221.
DOI: 10.1016/j.msea.2016.02.065
Google Scholar
[19]
A. Yabuki, K. Okumura, I.W. Fathona, Transparent conductive coatings of hot-pressed ITO nanoparticles on a plastic substrate, Chem. Eng. J. 252 (2014) 275-280.
DOI: 10.1016/j.cej.2014.05.024
Google Scholar
[20]
O.N. Senkov, D.B. Miracle, Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys, Mater. Res. Bull. 36 (2001) 2183-2198.
DOI: 10.1016/s0025-5408(01)00715-2
Google Scholar
[21]
S.T. Chen, W.Y. Tang, Y.F. Kuo, S.Y. Chen, C.H. Tsau, T.T. Shun, J.W. Yeh, Microstructure and properties of age-hardenable AlxCrFe1. 5MnNi0. 5 alloys, Mater. Sci. Eng. A. 527 (2010) 5818-5825.
DOI: 10.1016/j.msea.2010.05.052
Google Scholar
[22]
ASTM, Standard G31-72, ASTM, PA, (2003).
Google Scholar
[23]
Y. Gan, W. Wang, Z. Guan, Z. Cui, Multi-layer laser solid forming of Zr65Al7. 5Ni10Cu17. 5 amorphous coating: Microstructure and corrosion resistance, Opt. Laser. Technol. 69 (2015) 17-22.
DOI: 10.1016/j.optlastec.2014.12.008
Google Scholar
[24]
P.K. Wong, C.T. Kwok, H.C. Man, F.T. Cheng, Corrosion behavior of laser-alloyed copper with titanium fabricated by high power diode laser, Corros. Sci. 57 (2012) 228-240.
DOI: 10.1016/j.corsci.2011.12.013
Google Scholar