AlCrFeNi High-Entropy Coating Fabricated by Mechanical Alloying and Hot Pressing Sintering

Article Preview

Abstract:

The AlCrFeNi high entropy coating was successfully prepared by mechanical alloying and vacuum hot pressing sintering technique on Q235 steel substrate, and the microstructures and microhardness, wear resistance and corrosion resistance were characterized in detail. Results showed that single body-centered cubic solid solution phase appears when the blended powder is ball milled for 30 h. The vacuum hot pressing sintered AlCrFeNi high entropy coating with single BCC solid solution is about 500 μm in thickness, which metallurgically bonded to substrate. The microhardness of the AlCrFeNi high entropy coating is about 520 HV, more than three times larger than that of the substrate. The wear resistance and corrosion resistance of the coating in 3.5% NaCl solution are greatly improved compared with the substrate, showing a dramatic reduction in average corrosion rate and wider passive range.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

628-637

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater. 6 (2004) 299–303.

DOI: 10.1002/adem.200300567

Google Scholar

[2] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A. 375–377 (2004) 213-218.

DOI: 10.1016/j.msea.2003.10.257

Google Scholar

[3] C.C. Tung, J.W. Yeh, T. t. Shun, S.K. Chen, Y.S. Huang, H.C. Chen, On the elemental effect of AlCoCrCuFeNi high-entropy alloy system, Mater. Lett. 61 (2007) 1-5.

DOI: 10.1016/j.matlet.2006.03.140

Google Scholar

[4] C.Y. Hsu, J.W. Yeh, S.K. Chen, T.T. Shun, Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0. 5Fe alloy with boron addition, Metall. Mater. Trans. A, 35 (2004) 1465-1469.

DOI: 10.1007/s11661-004-0254-x

Google Scholar

[5] C.J. Tong, M.R. Chen, J.W. Yeh, S.J. Lin, S.K. Chen, T.T. Shun, S.Y. Chang, Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metall. Mater. Trans. A, 36 (2005) 1263-1271.

DOI: 10.1007/s11661-005-0218-9

Google Scholar

[6] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog Mater Sci, 61 (2014) 1-93.

DOI: 10.1016/j.pmatsci.2013.10.001

Google Scholar

[7] Y.J. Zhao, J.W. Qiao, S.G. Ma, M.C. Gao, H.J. Yang, M.W. Chen, Y. Zhang, A hexagonal close-packed high-entropy alloy: The effect of entropy, Mater. Des. 96 (2016) 10-15.

DOI: 10.1016/j.matdes.2016.01.149

Google Scholar

[8] X.W. Qiu, C.G. Liu, Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding, J. Alloys Compd. 553 (2013) 216-220.

DOI: 10.1016/j.jallcom.2012.11.100

Google Scholar

[9] M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, J.W. Yeh, Microstructure and wear behavior of AlxCo1. 5CrFeNi1. 5Tiy high-entropy alloys, Acta. Mater. 59 (2011) 6308-6317.

DOI: 10.1016/j.actamat.2011.06.041

Google Scholar

[10] C. Huang, Y. Zhang, J. Shen, R. Vilar, Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V alloy, Surf. Coat. Tech. 206 (2011) 1389-1395.

DOI: 10.1016/j.surfcoat.2011.08.063

Google Scholar

[11] C. Huang, Y. Zhang, R. Vilar, J. Shen, Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate, Mater. Des. 41 (2012) 338-343.

DOI: 10.1016/j.matdes.2012.04.049

Google Scholar

[12] K. Zhang, Z. Fu, Effects of annealing treatment on phase composition and microstructure of CoCrFeNiTiAlx high-entropy alloys, Intermetallics. 22 (2012) 24-32.

DOI: 10.1016/j.intermet.2011.10.010

Google Scholar

[13] Y. Dong, K. Zhou, Y. Lu, X. Gao, T. Wang, T. Li, Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy, Mater. Des. 57 (2014) 67-72.

DOI: 10.1016/j.matdes.2013.12.048

Google Scholar

[14] X.B. Liu, X.J. Meng, H.Q. Liu, G.L. Shi, S.H. Wu, C.F. Sun, M.D. Wang, L.H. Qi, Development and characterization of laser clad high temperature self-lubricating wear resistant composite coatings on Ti–6Al–4V alloy, Mater. Des. 55 (2014) 404-409.

DOI: 10.1016/j.matdes.2013.09.038

Google Scholar

[15] Y.C. Lin, Y.H. Cho, Elucidating the microstructural and tribological characteristics of NiCrAlCoCu and NiCrAlCoMo multicomponent alloy clad layers synthesized in situ, Surf. Coat. Tech. 203 (2009) 1694-1701.

DOI: 10.1016/j.surfcoat.2009.01.004

Google Scholar

[16] X.R. Wang, Z.Q. Wang, P. He, T.S. Lin, Y. Shi, Microstructure and wear properties of CuNiSiTiZr high-entropy alloy coatings on TC11 titanium alloy produced by electrospark-computer numerical control deposition process, Surf. Coat. Tech. 283 (2015).

DOI: 10.1016/j.surfcoat.2015.10.013

Google Scholar

[17] J.B. Cheng, X.B. Liang, Z.H. Wang, B.S. Xu, Formation and Mechanical Properties of CoNiCuFeCr High-Entropy Alloys Coatings Prepared by Plasma Transferred Arc Cladding Process, Plasma. Chem. Plasma. P. 33 (2013) 979-992.

DOI: 10.1007/s11090-013-9469-1

Google Scholar

[18] D.L. Yang, F. Qiu, Z.K. Lei, Q.L. Zhao, Q.C. Jiang, The interfacial structure and mechanical properties of Ti5Si3-coated SiCP/Al2014 composites fabricated by powder metallurgy with hot pressing, Mater. Sci. Eng. A. 661 (2016) 217-221.

DOI: 10.1016/j.msea.2016.02.065

Google Scholar

[19] A. Yabuki, K. Okumura, I.W. Fathona, Transparent conductive coatings of hot-pressed ITO nanoparticles on a plastic substrate, Chem. Eng. J. 252 (2014) 275-280.

DOI: 10.1016/j.cej.2014.05.024

Google Scholar

[20] O.N. Senkov, D.B. Miracle, Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys, Mater. Res. Bull. 36 (2001) 2183-2198.

DOI: 10.1016/s0025-5408(01)00715-2

Google Scholar

[21] S.T. Chen, W.Y. Tang, Y.F. Kuo, S.Y. Chen, C.H. Tsau, T.T. Shun, J.W. Yeh, Microstructure and properties of age-hardenable AlxCrFe1. 5MnNi0. 5 alloys, Mater. Sci. Eng. A. 527 (2010) 5818-5825.

DOI: 10.1016/j.msea.2010.05.052

Google Scholar

[22] ASTM, Standard G31-72, ASTM, PA, (2003).

Google Scholar

[23] Y. Gan, W. Wang, Z. Guan, Z. Cui, Multi-layer laser solid forming of Zr65Al7. 5Ni10Cu17. 5 amorphous coating: Microstructure and corrosion resistance, Opt. Laser. Technol. 69 (2015) 17-22.

DOI: 10.1016/j.optlastec.2014.12.008

Google Scholar

[24] P.K. Wong, C.T. Kwok, H.C. Man, F.T. Cheng, Corrosion behavior of laser-alloyed copper with titanium fabricated by high power diode laser, Corros. Sci. 57 (2012) 228-240.

DOI: 10.1016/j.corsci.2011.12.013

Google Scholar