Non-Isothermal Crystallization Kinetics of Mg61Zn35Ca4 Glassy Alloy

Article Preview

Abstract:

The non-isothermal crystallization kinetics of Mg61Zn35Ca4 glassy alloy prepared via melt-spinning were studied by using isoconversion method. The crystalline characterization of Mg61Zn35Ca4 was examined by X-ray diffraction. Different scanning calorimeter was used to investigate the non-isothermal crystallization kinetics at different heating rates (3-60 K/min). The calculated value of Avrami exponent obtained by Matusita method indicated that the crystalline transformation for Mg61Zn35Ca4 is a complex process of nucleation and growth. The Kissinger-Akahira-Sunose method was used to investigate the activation energy. The activation energy of crystallization varies with the extent of crystallization and hence with temperature. The Sestak-Berggren model was used to describe the non-isothermal crystallization kinetics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

657-665

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Witte, J. Fischer, J. Nellesen, et al, In vitro and in vivo corrosion measurements of magnesium alloys, Biomaterials. 27 (2006) 1013-1018.

DOI: 10.1016/j.biomaterials.2005.07.037

Google Scholar

[2] F. Witte, V. Kaese, H. Haferkamp, et al, In vivo corrosion of four magnesium alloys and the associated bone response, Biomaterials. 26 (2005) 3557-3563.

DOI: 10.1016/j.biomaterials.2004.09.049

Google Scholar

[3] M.P. Staiger, A.M. Pietak, J. Huadmai, et al, Magnesium and its Alloys as Orthopedic Biomaterials, Biomaterials. 27 (2006) 1728-1734.

DOI: 10.1016/j.biomaterials.2005.10.003

Google Scholar

[4] F. Witte, N. Hort, C. Vogt, et al, Degradable biomaterials based on magnesium corrosion, Curr. Opin. Solid. State. Mater. Sci. 12 (2008) 63-72.

DOI: 10.1016/j.cossms.2009.04.001

Google Scholar

[5] A. Krause, N.V.D. Höh, D. Bormann, et al, Degradation behaviour and mechanical properties of magnesium implants in rabbit tibiae, J. Mater. Sci. 45 (2010) 624-632.

DOI: 10.1007/s10853-009-3936-3

Google Scholar

[6] A.C. Hänzi, I. Gerber, M. Schinhammer, et al, On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys, Acta. Biomater. 6 (2010) 1824-1833.

DOI: 10.1016/j.actbio.2009.10.008

Google Scholar

[7] Z.G. Huan, M.A. Leeflang, J. Zhou, et al, In vitro degradation behavior and cytocompatibility of Mg–Zn–Zr alloys, J. Mate. Sci. - Mater. Med. 21 (2010) 2623-2635.

DOI: 10.1007/s10856-010-4111-8

Google Scholar

[8] J.N. Li, P. Cao, X.N. Zhang, et al, In vitro degradation and cell attachment of a PLGA coated biodegradable Mg–6Zn based alloy, J. Mater. Sci. 45 (2010) 6038-6045.

DOI: 10.1007/s10853-010-4688-9

Google Scholar

[9] X.N. Gu, W.Y. Zheng, Y. Cheng, A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate, Acta. Biomater. 5 (2009) 2790-2799.

DOI: 10.1016/j.actbio.2009.01.048

Google Scholar

[10] H.M. Wong, K.W.K. Yeung, K.O. Lam, et al, A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants, Biomaterials. 31 (2010) 2084-(2096).

DOI: 10.1016/j.biomaterials.2009.11.111

Google Scholar

[11] X.N. Gu, N. Li, W.R. Zhou, et al, Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a Mg-Ca alloy, Acta. Biomater. 7 (2011) 1880-1889.

DOI: 10.1016/j.actbio.2010.11.034

Google Scholar

[12] W.H. Wang, C. Dong, C.H. Shek, Bulk metallic glasses, Mater. Sci. Eng. R. Rep. 44 (2004) 45-89.

Google Scholar

[13] J.R. Scully, A. Gebert, J.H. Payer, Corrosion and related mechanical properties of bulk metallic glasses, J. Mater. Res. 22 (2007) 302-313.

DOI: 10.1557/jmr.2007.0051

Google Scholar

[14] A. Gebert, U. Wolff, A. John, et al, Stability of the bulk glass-forming Mg65Y10Cu25 alloy in aqueous electrolytes, Mater. Sci. Eng. A. 299 (2001) 125-135.

DOI: 10.1016/s0921-5093(00)01401-5

Google Scholar

[15] M. S. Dambatta, S. Izman, B. Yahaya, et al. Mg-based bulk metallic glasses for biodegradable implant materials: A review on glass forming ability, mechanical properties, and biocompatibility, J. Non-Cryst. Solids. 426 (2015) 110-115.

DOI: 10.1016/j.jnoncrysol.2015.07.018

Google Scholar

[16] B. Zberg, P.J. Uggowitzer, J.F. Löffler, MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants, Nat. Mater. 8 (2009) 887-891.

DOI: 10.1038/nmat2542

Google Scholar

[17] J. Schrörs, G. Kumar, T.M. Hodges, et al, Bulk metallic glasses for biomedical applications, JOM. 61 (2009) 21-29.

Google Scholar

[18] B. Zberg, E.R. Arata, P.J. Uggowitzer, et al, Tensile properties of glassy MgZnCa wires and reliability analysis using Weibull statistics, Acta. Mater. 57 (2009) 3223-3231.

DOI: 10.1016/j.actamat.2009.03.028

Google Scholar

[19] E. Ma, J. Xu, Biodegradable Alloys: The glass window of opportunities, Nat. Mater. 8 (2009) 855-857.

Google Scholar

[20] X. Gu, Y. Zheng, S. Zhong, et al, Corrosion of, and cellular responses to Mg–Zn–Ca bulk metallic glasses, Biomaterials. 31 (2010) 1093-1103.

DOI: 10.1016/j.biomaterials.2009.11.015

Google Scholar

[21] M. Ramya, S. G. Sarwat, V. Udhayabanu, et al, Role of partially amorphous structure and alloying elements on the corrosion behavior of Mg–Zn–Ca bulk metallic glass for biomedical applications, Mate. Design. 86 (2015) 829-835.

DOI: 10.1016/j.matdes.2015.07.154

Google Scholar

[22] S.P. Ju, H.H. Huang, C.C. Huang, Predicted atomic arrangement of Mg67Zn28Ca5 and Ca50Zn30Mg20 bulk metallic glasses by atomic simulation, J. Non-Cryst. Solids. 388 (2014) 23-31.

DOI: 10.1016/j.jnoncrysol.2014.01.005

Google Scholar

[23] Y.N. Zhang, G.J. Rocher, B. Briccoli, et al, Crystallization characteristics of the Mg-rich metallic glasses in the Ca–Mg–Zn system, J. Alloys. Compd. 552 (2013) 88-97.

DOI: 10.1016/j.jallcom.2012.10.089

Google Scholar

[24] N.M. Abdelazim, A.Y. Abdel-Latief, A.A. Abu-Sehly, et al, Determination of activation energy of amorphous to crystalline transformation for Se90Te10 using isoconversional methods, J. Non-Cryst. Solids. 387 (2014) 79-85.

DOI: 10.1016/j.jnoncrysol.2014.01.012

Google Scholar

[25] K. Matusita, T. Komatsu, R. Yokota, Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials, J. Mater. Sci. 19 (1984) 291-296.

DOI: 10.1007/bf02403137

Google Scholar

[26] A.A. Joraid, S.N. Alamri, A.A. Abu-Sehly, et al, Non-isothermal crystallisation kinetics of amorphous selenium prepared by high-energy ball milling: A comparison with the melt-quenching and thin-film techniques, J. Non-Cryst. Solids. 358 (2012).

DOI: 10.1016/j.jnoncrysol.2012.02.029

Google Scholar

[27] A.A. Abu-Sehly, Kinetics of the glass transition in As22S78 chalcogenide glass: Activation energy and fragility index, Mater. Chem. Phys. 125 (2011) 672-677.

DOI: 10.1016/j.matchemphys.2010.09.074

Google Scholar

[28] R.M.A. Abdel, L.A.Y. Abdel, A. El-Korashy, et al, Kinetic Analysis of Crystallization Process in Amorphous Se90−xTe10Pbx Glasses, J. Mater. Trans. 51 (2010) 428-433.

Google Scholar

[29] N. Mebta, A. Kumar, Comparative analysis of calorimetric studies in Se90M10, (M =In, Te, Sb) chalcogenide glasses, J. Therm. Anal. Calorim. 87 (2007) 343-350.

DOI: 10.1007/s10973-005-7411-3

Google Scholar

[30] H.E. Kissinger, Variation of Peak Temperature with Heating Rate in Differential Thermal Analysis, J. Res. Natl. Bur. of Stand. 57 (1956) 217-221.

DOI: 10.6028/jres.057.026

Google Scholar

[31] H.E. Kissinger, Reaction Kinetics in Differential Thermal Analysis, Anal. Chem. 29 (1957), 1702-1706.

DOI: 10.1021/ac60131a045

Google Scholar

[32] D. Turnbull, J.C. Fisher, Rate of Nucleation in Condensed Systems, J. Chem. Phys. 17 (1949) 71-73.

Google Scholar

[33] J. Málek, Kinetic analysis of crystallization processes in amorphous materials, Thermochim. Acta. 355 (2000) 239-253.

DOI: 10.1016/s0040-6031(00)00449-4

Google Scholar

[34] J. Málek, The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses, Thermochim. Acta. 267 (1995) 61-73.

DOI: 10.1016/0040-6031(95)02466-2

Google Scholar

[35] P. Pustkova, D. Svadlak, J. Shanelova, et al, The non-isothermal crystallization kinetics of Sb2S3, in the (GeS2)0. 2 (Sb2S3)0. 8 glass, Theor. Chim. Acta. 445 (2006) 116-120.

DOI: 10.1016/j.tca.2005.08.002

Google Scholar

[36] J. Málek, J.M. Criado, J. Sesták, et al, The boundary conditions for kinetic models, Thermochim. Acta. 153 (1989) 429-432.

DOI: 10.1016/0040-6031(89)85452-8

Google Scholar