[1]
F. Witte, J. Fischer, J. Nellesen, et al, In vitro and in vivo corrosion measurements of magnesium alloys, Biomaterials. 27 (2006) 1013-1018.
DOI: 10.1016/j.biomaterials.2005.07.037
Google Scholar
[2]
F. Witte, V. Kaese, H. Haferkamp, et al, In vivo corrosion of four magnesium alloys and the associated bone response, Biomaterials. 26 (2005) 3557-3563.
DOI: 10.1016/j.biomaterials.2004.09.049
Google Scholar
[3]
M.P. Staiger, A.M. Pietak, J. Huadmai, et al, Magnesium and its Alloys as Orthopedic Biomaterials, Biomaterials. 27 (2006) 1728-1734.
DOI: 10.1016/j.biomaterials.2005.10.003
Google Scholar
[4]
F. Witte, N. Hort, C. Vogt, et al, Degradable biomaterials based on magnesium corrosion, Curr. Opin. Solid. State. Mater. Sci. 12 (2008) 63-72.
DOI: 10.1016/j.cossms.2009.04.001
Google Scholar
[5]
A. Krause, N.V.D. Höh, D. Bormann, et al, Degradation behaviour and mechanical properties of magnesium implants in rabbit tibiae, J. Mater. Sci. 45 (2010) 624-632.
DOI: 10.1007/s10853-009-3936-3
Google Scholar
[6]
A.C. Hänzi, I. Gerber, M. Schinhammer, et al, On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys, Acta. Biomater. 6 (2010) 1824-1833.
DOI: 10.1016/j.actbio.2009.10.008
Google Scholar
[7]
Z.G. Huan, M.A. Leeflang, J. Zhou, et al, In vitro degradation behavior and cytocompatibility of Mg–Zn–Zr alloys, J. Mate. Sci. - Mater. Med. 21 (2010) 2623-2635.
DOI: 10.1007/s10856-010-4111-8
Google Scholar
[8]
J.N. Li, P. Cao, X.N. Zhang, et al, In vitro degradation and cell attachment of a PLGA coated biodegradable Mg–6Zn based alloy, J. Mater. Sci. 45 (2010) 6038-6045.
DOI: 10.1007/s10853-010-4688-9
Google Scholar
[9]
X.N. Gu, W.Y. Zheng, Y. Cheng, A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate, Acta. Biomater. 5 (2009) 2790-2799.
DOI: 10.1016/j.actbio.2009.01.048
Google Scholar
[10]
H.M. Wong, K.W.K. Yeung, K.O. Lam, et al, A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants, Biomaterials. 31 (2010) 2084-(2096).
DOI: 10.1016/j.biomaterials.2009.11.111
Google Scholar
[11]
X.N. Gu, N. Li, W.R. Zhou, et al, Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a Mg-Ca alloy, Acta. Biomater. 7 (2011) 1880-1889.
DOI: 10.1016/j.actbio.2010.11.034
Google Scholar
[12]
W.H. Wang, C. Dong, C.H. Shek, Bulk metallic glasses, Mater. Sci. Eng. R. Rep. 44 (2004) 45-89.
Google Scholar
[13]
J.R. Scully, A. Gebert, J.H. Payer, Corrosion and related mechanical properties of bulk metallic glasses, J. Mater. Res. 22 (2007) 302-313.
DOI: 10.1557/jmr.2007.0051
Google Scholar
[14]
A. Gebert, U. Wolff, A. John, et al, Stability of the bulk glass-forming Mg65Y10Cu25 alloy in aqueous electrolytes, Mater. Sci. Eng. A. 299 (2001) 125-135.
DOI: 10.1016/s0921-5093(00)01401-5
Google Scholar
[15]
M. S. Dambatta, S. Izman, B. Yahaya, et al. Mg-based bulk metallic glasses for biodegradable implant materials: A review on glass forming ability, mechanical properties, and biocompatibility, J. Non-Cryst. Solids. 426 (2015) 110-115.
DOI: 10.1016/j.jnoncrysol.2015.07.018
Google Scholar
[16]
B. Zberg, P.J. Uggowitzer, J.F. Löffler, MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants, Nat. Mater. 8 (2009) 887-891.
DOI: 10.1038/nmat2542
Google Scholar
[17]
J. Schrörs, G. Kumar, T.M. Hodges, et al, Bulk metallic glasses for biomedical applications, JOM. 61 (2009) 21-29.
Google Scholar
[18]
B. Zberg, E.R. Arata, P.J. Uggowitzer, et al, Tensile properties of glassy MgZnCa wires and reliability analysis using Weibull statistics, Acta. Mater. 57 (2009) 3223-3231.
DOI: 10.1016/j.actamat.2009.03.028
Google Scholar
[19]
E. Ma, J. Xu, Biodegradable Alloys: The glass window of opportunities, Nat. Mater. 8 (2009) 855-857.
Google Scholar
[20]
X. Gu, Y. Zheng, S. Zhong, et al, Corrosion of, and cellular responses to Mg–Zn–Ca bulk metallic glasses, Biomaterials. 31 (2010) 1093-1103.
DOI: 10.1016/j.biomaterials.2009.11.015
Google Scholar
[21]
M. Ramya, S. G. Sarwat, V. Udhayabanu, et al, Role of partially amorphous structure and alloying elements on the corrosion behavior of Mg–Zn–Ca bulk metallic glass for biomedical applications, Mate. Design. 86 (2015) 829-835.
DOI: 10.1016/j.matdes.2015.07.154
Google Scholar
[22]
S.P. Ju, H.H. Huang, C.C. Huang, Predicted atomic arrangement of Mg67Zn28Ca5 and Ca50Zn30Mg20 bulk metallic glasses by atomic simulation, J. Non-Cryst. Solids. 388 (2014) 23-31.
DOI: 10.1016/j.jnoncrysol.2014.01.005
Google Scholar
[23]
Y.N. Zhang, G.J. Rocher, B. Briccoli, et al, Crystallization characteristics of the Mg-rich metallic glasses in the Ca–Mg–Zn system, J. Alloys. Compd. 552 (2013) 88-97.
DOI: 10.1016/j.jallcom.2012.10.089
Google Scholar
[24]
N.M. Abdelazim, A.Y. Abdel-Latief, A.A. Abu-Sehly, et al, Determination of activation energy of amorphous to crystalline transformation for Se90Te10 using isoconversional methods, J. Non-Cryst. Solids. 387 (2014) 79-85.
DOI: 10.1016/j.jnoncrysol.2014.01.012
Google Scholar
[25]
K. Matusita, T. Komatsu, R. Yokota, Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials, J. Mater. Sci. 19 (1984) 291-296.
DOI: 10.1007/bf02403137
Google Scholar
[26]
A.A. Joraid, S.N. Alamri, A.A. Abu-Sehly, et al, Non-isothermal crystallisation kinetics of amorphous selenium prepared by high-energy ball milling: A comparison with the melt-quenching and thin-film techniques, J. Non-Cryst. Solids. 358 (2012).
DOI: 10.1016/j.jnoncrysol.2012.02.029
Google Scholar
[27]
A.A. Abu-Sehly, Kinetics of the glass transition in As22S78 chalcogenide glass: Activation energy and fragility index, Mater. Chem. Phys. 125 (2011) 672-677.
DOI: 10.1016/j.matchemphys.2010.09.074
Google Scholar
[28]
R.M.A. Abdel, L.A.Y. Abdel, A. El-Korashy, et al, Kinetic Analysis of Crystallization Process in Amorphous Se90−xTe10Pbx Glasses, J. Mater. Trans. 51 (2010) 428-433.
Google Scholar
[29]
N. Mebta, A. Kumar, Comparative analysis of calorimetric studies in Se90M10, (M =In, Te, Sb) chalcogenide glasses, J. Therm. Anal. Calorim. 87 (2007) 343-350.
DOI: 10.1007/s10973-005-7411-3
Google Scholar
[30]
H.E. Kissinger, Variation of Peak Temperature with Heating Rate in Differential Thermal Analysis, J. Res. Natl. Bur. of Stand. 57 (1956) 217-221.
DOI: 10.6028/jres.057.026
Google Scholar
[31]
H.E. Kissinger, Reaction Kinetics in Differential Thermal Analysis, Anal. Chem. 29 (1957), 1702-1706.
DOI: 10.1021/ac60131a045
Google Scholar
[32]
D. Turnbull, J.C. Fisher, Rate of Nucleation in Condensed Systems, J. Chem. Phys. 17 (1949) 71-73.
Google Scholar
[33]
J. Málek, Kinetic analysis of crystallization processes in amorphous materials, Thermochim. Acta. 355 (2000) 239-253.
DOI: 10.1016/s0040-6031(00)00449-4
Google Scholar
[34]
J. Málek, The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses, Thermochim. Acta. 267 (1995) 61-73.
DOI: 10.1016/0040-6031(95)02466-2
Google Scholar
[35]
P. Pustkova, D. Svadlak, J. Shanelova, et al, The non-isothermal crystallization kinetics of Sb2S3, in the (GeS2)0. 2 (Sb2S3)0. 8 glass, Theor. Chim. Acta. 445 (2006) 116-120.
DOI: 10.1016/j.tca.2005.08.002
Google Scholar
[36]
J. Málek, J.M. Criado, J. Sesták, et al, The boundary conditions for kinetic models, Thermochim. Acta. 153 (1989) 429-432.
DOI: 10.1016/0040-6031(89)85452-8
Google Scholar