[1]
Liu ZQ, Liu G, Qu RT, Zhang ZF, Wu SJ, Zhang T. Microstructural percolation assisted breakthrough of trade-off between strength and ductility in CuZr-based metallic glass composites. Sci Rep 2014; 4: 4167.
DOI: 10.1038/srep04167
Google Scholar
[2]
Wu FF, Chan K, Jiang SS, Chen SH, Wang G. Bulk metallic glass composite with good tensile ductility, high strength and large elastic strain limit. Sci Rep 2014; 4: 5302.
DOI: 10.1038/srep05302
Google Scholar
[3]
Okulov IV, Soldatov IV, Sarmanova MF, Kaban I, Gemming T, Edstrom K, et al. Flash Joule heating for ductilization of metallic glasses. Nat Commun 2015; 6: 7932.
DOI: 10.1038/ncomms8932
Google Scholar
[4]
Wei Y, Du J, Chen R. Martensitic transformation induced plasticity in ZrCuAl metallic glass composites: Precipitate size and volume effects. Intermetallics 2016; 68: 1-4.
DOI: 10.1016/j.intermet.2015.09.002
Google Scholar
[5]
Liu ZQ, Li R, Liu G, Su WH, Wang H, Li Y, et al. Microstructural tailoring and improvement of mechanical properties in CuZr-based bulk metallic glass composites. Acta Mater 2012; 60: 3128-39.
DOI: 10.1016/j.actamat.2012.02.017
Google Scholar
[6]
Song KK, Pauly S, Zhang Y, Li R, Gorantla S, Narayanan N, et al. Triple yielding and deformation mechanisms in metastable Cu47. 5Zr47. 5Al5 composites. Acta Mater 2012; 60: 6000-12.
DOI: 10.1016/j.actamat.2012.07.015
Google Scholar
[7]
Wei R, Chang Y, Li YF, Li G, Yang S, Zhang CJ, et al. Effect of lateral pre-compression on the compressive behavior of a CuZr-based bulk metallic glass composite containing B2-CuZr phase. Mater Sci Eng A 2013; 587: 233-9.
DOI: 10.1016/j.msea.2013.09.009
Google Scholar
[8]
Corteen J, Rainforth M, Todd I. A mathematical approach to transformation toughening in bulk metallic glasses. Scr Mater 2011; 65: 524-7.
DOI: 10.1016/j.scriptamat.2011.06.018
Google Scholar
[9]
Wu Y, Wang H, Wu HH, Zhang ZY, Hui XD, Chen GL, et al. Formation of Cu–Zr–Al bulk metallic glass composites with improved tensile properties. Acta Mater 2011; 59: 2928-36.
DOI: 10.1016/j.actamat.2011.01.029
Google Scholar
[10]
Wu Y, Xiao YH, Chen GL, Liu CT, Lu ZP. Bulk Metallic Glass Composites with Transformation‐Mediated Work‐Hardening and Ductility. Adv Mater 2010; 22: 2770-3.
DOI: 10.1002/adma.201000482
Google Scholar
[11]
Wu Y, Zhou DQ, Song WL, Wang H, Zhang ZY, Ma D, et al. Ductilizing Bulk Metallic Glass Composite by Tailoring Stacking Fault Energy. Phys Rev Lett 2012; 109: 245506.
DOI: 10.1103/physrevlett.109.245506
Google Scholar
[12]
Wei R, Yang S, Zhang CJ, He L. Strain rate dependence of mechanical behavior in a CuZr-based bulk metallic glass composite containing B2-CuZr phase. Mater Sci Eng A 2014; 606: 268-75.
DOI: 10.1016/j.msea.2014.03.092
Google Scholar
[13]
Pauly S, Liu G, Wang G, Kuehn U, Mattern N, Eckert J. Microstructural heterogeneities governing the deformation of Cu47. 5Zr47. 5Al5 bulk metallic glass composites. Acta Mater 2009; 57: 5445-53.
DOI: 10.1016/j.actamat.2009.07.042
Google Scholar
[14]
Wei R, Yang S, Chang Y, Li YF, Zhang CJ, He L. Mechanical property degradation of a CuZr-based bulk metallic glass composite induced by sub-Tg annealing. Mater Des 2014; 56: 128-38.
DOI: 10.1016/j.matdes.2013.11.001
Google Scholar
[15]
Xu DH, Duan G, Johnson WL. Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Phys Rev Lett 2004; 92: 245504.
DOI: 10.1103/physrevlett.92.245504
Google Scholar
[16]
Yi G, Zhang X, Qin J, Ning J, Zhang S, Ma M, et al. Effects of Ni and Ti on the phase stability, martensitic transformation and mechanical properties of B2 CuZr phase. Computational Materials Science 2015; 110: 121-5.
DOI: 10.1016/j.commatsci.2015.08.013
Google Scholar
[17]
Song KK, Wu DY, Pauly S, Peng CX, Wang L, Eckert J. Thermal stability of B2 CuZr phase, microstructural evolution and martensitic transformation in Cu–Zr–Ti alloys. Intermetallics 2015; 67: 177-84.
DOI: 10.1016/j.intermet.2015.08.015
Google Scholar
[18]
Han ZH, He L, Zhong MB, Hou YL. Dual specimen-size dependences of plastic deformation behavior of a traditional Zr-based bulk metallic glass in compression. Mater Sci Eng A 2009; 513-514: 344-51.
DOI: 10.1016/j.msea.2009.02.011
Google Scholar
[19]
Calloch S, Taillard K, Arbab Chirani S, Lexcellent C, Patoor E. Relation between the martensite volume fraction and the equivalent transformation strain in shape memory alloys. Mater Sci Eng A 2006; 438–440: 441-4.
DOI: 10.1016/j.msea.2005.12.072
Google Scholar
[20]
Hofmann DC, Suh JY, Wiest A, Lind ML, Demetriou MD, Johnson WL. Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility. Proc Natl Acad Sci USA 2008; 105: 20136-40.
DOI: 10.1073/pnas.0809000106
Google Scholar
[21]
Hofmann DC, Suh JY, Wiest A, Duan G, Lind ML, Demetriou MD, et al. Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 2008; 451: 1085-9.
DOI: 10.1038/nature06598
Google Scholar
[22]
Wu FF, Chan KC, Chen SH, Jiang SS, Wang G. ZrCu-based bulk metallic glass composites with large strain-hardening capability. Mater Sci Eng A 2015; 636: 502- 6.
DOI: 10.1016/j.msea.2015.04.027
Google Scholar
[23]
Wu FF, Chan K, Li ST, Wang G. Stabilized shear banding of ZrCu-based metallic glass composites under tensile loading. J Mater Sci 2014; 49: 2164-70.
DOI: 10.1007/s10853-013-7909-1
Google Scholar
[24]
Pauly S, Gorantla S, Wang G, Kühn U, Eckert J. Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nat Mater 2010; 9: 473-7.
DOI: 10.1038/nmat2767
Google Scholar