Effect of B2 Phase Transformation on the Mechanical Behavior of CuZr-Based Bulk Metallic Glass Composites

Article Preview

Abstract:

The mechanical behavior of CuZr-based bulk metallic glass composites with different B2-CuZr phase transformation ability was investigated. The B2 phase transformation is conducive to enhance the mechanical properties of CuZr-based bulk metallic glass composites. The mechanical properties of the austenitic B2 phase specimens were also studied to understand the mechanism of phase transformation effect. It was found that the B2 phase with martensitic transformation exhibits lower yield strength and stronger work-hardening capability than the B2 phase without martensitic transformation. Thus, the phase transformation effect of B2-CuZr phase, accompanying with its lower yield strength and stronger work-hardening capability, is the main reason for the CuZr-based bulk metallic glass composites possess outstanding mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

672-678

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Liu ZQ, Liu G, Qu RT, Zhang ZF, Wu SJ, Zhang T. Microstructural percolation assisted breakthrough of trade-off between strength and ductility in CuZr-based metallic glass composites. Sci Rep 2014; 4: 4167.

DOI: 10.1038/srep04167

Google Scholar

[2] Wu FF, Chan K, Jiang SS, Chen SH, Wang G. Bulk metallic glass composite with good tensile ductility, high strength and large elastic strain limit. Sci Rep 2014; 4: 5302.

DOI: 10.1038/srep05302

Google Scholar

[3] Okulov IV, Soldatov IV, Sarmanova MF, Kaban I, Gemming T, Edstrom K, et al. Flash Joule heating for ductilization of metallic glasses. Nat Commun 2015; 6: 7932.

DOI: 10.1038/ncomms8932

Google Scholar

[4] Wei Y, Du J, Chen R. Martensitic transformation induced plasticity in ZrCuAl metallic glass composites: Precipitate size and volume effects. Intermetallics 2016; 68: 1-4.

DOI: 10.1016/j.intermet.2015.09.002

Google Scholar

[5] Liu ZQ, Li R, Liu G, Su WH, Wang H, Li Y, et al. Microstructural tailoring and improvement of mechanical properties in CuZr-based bulk metallic glass composites. Acta Mater 2012; 60: 3128-39.

DOI: 10.1016/j.actamat.2012.02.017

Google Scholar

[6] Song KK, Pauly S, Zhang Y, Li R, Gorantla S, Narayanan N, et al. Triple yielding and deformation mechanisms in metastable Cu47. 5Zr47. 5Al5 composites. Acta Mater 2012; 60: 6000-12.

DOI: 10.1016/j.actamat.2012.07.015

Google Scholar

[7] Wei R, Chang Y, Li YF, Li G, Yang S, Zhang CJ, et al. Effect of lateral pre-compression on the compressive behavior of a CuZr-based bulk metallic glass composite containing B2-CuZr phase. Mater Sci Eng A 2013; 587: 233-9.

DOI: 10.1016/j.msea.2013.09.009

Google Scholar

[8] Corteen J, Rainforth M, Todd I. A mathematical approach to transformation toughening in bulk metallic glasses. Scr Mater 2011; 65: 524-7.

DOI: 10.1016/j.scriptamat.2011.06.018

Google Scholar

[9] Wu Y, Wang H, Wu HH, Zhang ZY, Hui XD, Chen GL, et al. Formation of Cu–Zr–Al bulk metallic glass composites with improved tensile properties. Acta Mater 2011; 59: 2928-36.

DOI: 10.1016/j.actamat.2011.01.029

Google Scholar

[10] Wu Y, Xiao YH, Chen GL, Liu CT, Lu ZP. Bulk Metallic Glass Composites with Transformation‐Mediated Work‐Hardening and Ductility. Adv Mater 2010; 22: 2770-3.

DOI: 10.1002/adma.201000482

Google Scholar

[11] Wu Y, Zhou DQ, Song WL, Wang H, Zhang ZY, Ma D, et al. Ductilizing Bulk Metallic Glass Composite by Tailoring Stacking Fault Energy. Phys Rev Lett 2012; 109: 245506.

DOI: 10.1103/physrevlett.109.245506

Google Scholar

[12] Wei R, Yang S, Zhang CJ, He L. Strain rate dependence of mechanical behavior in a CuZr-based bulk metallic glass composite containing B2-CuZr phase. Mater Sci Eng A 2014; 606: 268-75.

DOI: 10.1016/j.msea.2014.03.092

Google Scholar

[13] Pauly S, Liu G, Wang G, Kuehn U, Mattern N, Eckert J. Microstructural heterogeneities governing the deformation of Cu47. 5Zr47. 5Al5 bulk metallic glass composites. Acta Mater 2009; 57: 5445-53.

DOI: 10.1016/j.actamat.2009.07.042

Google Scholar

[14] Wei R, Yang S, Chang Y, Li YF, Zhang CJ, He L. Mechanical property degradation of a CuZr-based bulk metallic glass composite induced by sub-Tg annealing. Mater Des 2014; 56: 128-38.

DOI: 10.1016/j.matdes.2013.11.001

Google Scholar

[15] Xu DH, Duan G, Johnson WL. Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Phys Rev Lett 2004; 92: 245504.

DOI: 10.1103/physrevlett.92.245504

Google Scholar

[16] Yi G, Zhang X, Qin J, Ning J, Zhang S, Ma M, et al. Effects of Ni and Ti on the phase stability, martensitic transformation and mechanical properties of B2 CuZr phase. Computational Materials Science 2015; 110: 121-5.

DOI: 10.1016/j.commatsci.2015.08.013

Google Scholar

[17] Song KK, Wu DY, Pauly S, Peng CX, Wang L, Eckert J. Thermal stability of B2 CuZr phase, microstructural evolution and martensitic transformation in Cu–Zr–Ti alloys. Intermetallics 2015; 67: 177-84.

DOI: 10.1016/j.intermet.2015.08.015

Google Scholar

[18] Han ZH, He L, Zhong MB, Hou YL. Dual specimen-size dependences of plastic deformation behavior of a traditional Zr-based bulk metallic glass in compression. Mater Sci Eng A 2009; 513-514: 344-51.

DOI: 10.1016/j.msea.2009.02.011

Google Scholar

[19] Calloch S, Taillard K, Arbab Chirani S, Lexcellent C, Patoor E. Relation between the martensite volume fraction and the equivalent transformation strain in shape memory alloys. Mater Sci Eng A 2006; 438–440: 441-4.

DOI: 10.1016/j.msea.2005.12.072

Google Scholar

[20] Hofmann DC, Suh JY, Wiest A, Lind ML, Demetriou MD, Johnson WL. Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility. Proc Natl Acad Sci USA 2008; 105: 20136-40.

DOI: 10.1073/pnas.0809000106

Google Scholar

[21] Hofmann DC, Suh JY, Wiest A, Duan G, Lind ML, Demetriou MD, et al. Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 2008; 451: 1085-9.

DOI: 10.1038/nature06598

Google Scholar

[22] Wu FF, Chan KC, Chen SH, Jiang SS, Wang G. ZrCu-based bulk metallic glass composites with large strain-hardening capability. Mater Sci Eng A 2015; 636: 502- 6.

DOI: 10.1016/j.msea.2015.04.027

Google Scholar

[23] Wu FF, Chan K, Li ST, Wang G. Stabilized shear banding of ZrCu-based metallic glass composites under tensile loading. J Mater Sci 2014; 49: 2164-70.

DOI: 10.1007/s10853-013-7909-1

Google Scholar

[24] Pauly S, Gorantla S, Wang G, Kühn U, Eckert J. Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nat Mater 2010; 9: 473-7.

DOI: 10.1038/nmat2767

Google Scholar