[1]
W. Klement, R.H. Willens, P. Duwez, Non-crystalline structure in solidified gold-silicon alloys, Nature. 187(1960) 869–870.
DOI: 10.1038/187869b0
Google Scholar
[2]
W. H. Wang, C. Dong, C. H. Shek, Bulk metallic glasses, J. Materials Science and Engineering: R: Reports, 44(2004): 45-89.
DOI: 10.1016/j.mser.2004.03.001
Google Scholar
[3]
D. Chen, A. Takeuchi, A. Inoue, Gd–Co–Al and Gd–Ni–Al bulk metallic glasses with high glass forming ability and good mechanical properties, J. Materials Science and Engineering: A, 457(2007): 226-230.
DOI: 10.1016/j.msea.2006.12.028
Google Scholar
[4]
X. Tong, G. Wang, Z. H. Stachurski, J. Bednarcik, N. Mattern, Q. J. Zhai, J. Eckert, Structural evolution and strength change of a metallic glass at different temperatures, J. Scientific Reports, 6(2016).
DOI: 10.1038/srep30876
Google Scholar
[5]
B.Q. Chen, Y. Li, M. Yi, R. Li, S.J. Pang, H. Wang, T. Zhang, Optimization of mechanical properties of bulk metallic glasses by residual stress adjustment using laser surface melting, J. ScriptaMaterialia, 66(2012): 1057-1060.
DOI: 10.1016/j.scriptamat.2012.02.046
Google Scholar
[6]
M. L. M. Sistiaga, R. Mertens, B. Vrancken, X. Wang, B. V. Hooreweder, J. P. Kruth, J.V. Humbeeck, Changing the alloy composition of Al7075 for better processability by selective laser melting, J. Journal of Materials Processing Technology, 2016, 238(2016).
DOI: 10.1016/j.jmatprotec.2016.08.003
Google Scholar
[7]
S. González, J. Fornell, E. Pellicer, S. Suriñach, M. D. Baró, A. L. Greer, F. J. Belzunce, J. Sort, Influence of the shot-peening intensity on the structure and near-surface mechanical properties of Ti40Zr10Cu38Pd12 bulk metallic glass, J. Applied Physics Letters, 103(2013).
DOI: 10.1063/1.4833017
Google Scholar
[8]
J. Fornell, A. Concustell, A. L. Greer, S. Suriñach, M. D. Baró, J. Sort, Effects of shot peening on the nanoindentation response of Cu 47. 5 Zr 47. 5 Al 5 metallic glass, J. Journal of Alloys and Compounds, 586(2014): S36-S40.
DOI: 10.1016/j.jallcom.2012.12.051
Google Scholar
[9]
C. S. Montross, T. Wei, L. Ye, G. Clark, Y. W. Mai, Laser shock processing and its effects on microstructure and properties of metal alloys: a review, J. International Journal of Fatigue, 24(2002): 1021-1036.
DOI: 10.1016/s0142-1123(02)00022-1
Google Scholar
[10]
Y. Cao, X. Xie, J. Antonaglia, B. Winiarski, G. Wang, Y. C. Shin, P. J. Withers, K. A. Dahmen, P. K. Liaw, Laser shock peening on Zr-based bulk metallic glass and its effect on plasticity: experiment and modeling, J. Scientific reports, 5(2015).
DOI: 10.1038/srep10789
Google Scholar
[11]
L. Wang, L. Wang, Z. H. Nie, Y. Ren, Y. F. Xue, R. H. Zhu, H.F. Zhang, H. M. Fu, Evolution of residual stress, free volume, and hardness in the laser shock peened Ti-based metallic glass, J. Materials & Design, 111(2016): 473-481.
DOI: 10.1016/j.matdes.2016.09.017
Google Scholar
[12]
Y. Zhang, W. H. Wang, A. L. Greer, Making metallic glasses plastic by control of residual stress, J. Nature materials, 5(2016): 857-860.
DOI: 10.1038/nmat1758
Google Scholar
[13]
C. H. Li, Q. Q. Duan, Z. F. Zhang, Tearing Toughness of Ductile Metals, J. Acta Metallurgica Sinica (English letters), 29(2016): 150-155.
DOI: 10.1007/s40195-016-0371-8
Google Scholar
[14]
G. Li, M. Q. Jiang, F. Jiang, L. He, J. Sun, The ductile to brittle transition behavior in a Zr-based bulk metallic glass, J. Materials Science and Engineering: A, 625(2015): 393-402.
DOI: 10.1016/j.msea.2014.11.088
Google Scholar
[15]
Y. H. Sun, Inverse ductile–brittle transition in metallic glasses, J. Materials Science and Technology, 31(2015): 635-650.
DOI: 10.1179/1743284714y.0000000684
Google Scholar
[16]
D. C. Hofmann, J. Y. Suh, A. Wiest, G. Duan, M. L. Lind, M. D. Demetriou, W. L Johnson, Designing metallic glass matrix composites with high toughness and tensile ductility, J. Nature, 451(2008): 1085-1089.
DOI: 10.1038/nature06598
Google Scholar
[17]
T. Lu, L. Xia, Z. Hu, et al. Deformation patterns in Zr-based and Ti-based metallic glasses under scratch processes, J. Scientia Sinica Physica, Mechanica & Astronomica, 42(2012): 603.
DOI: 10.1360/132012-293
Google Scholar
[18]
J. Eckert, J. Das, S. Pauly, C. Duhamel, Mechanical properties of bulk metallic glasses and composites, J. Journal of materials research, 22(2007): 285-301.
DOI: 10.1557/jmr.2007.0050
Google Scholar
[19]
C. S. Montross, T. Wei, L. Ye, G. Clark, Y. W. Mai, Laser shock processing and its effects on microstructure and properties of metal alloys: a review, J. International Journal of Fatigue, 24(2002): 1021-1036.
DOI: 10.1016/s0142-1123(02)00022-1
Google Scholar
[20]
J.N. Johnson, R.W. Rhode, Dynamic deformation twinning in shock loaded iron, J. Journal of Applied Physics 42(1971): 4171–82.
DOI: 10.1063/1.1659750
Google Scholar
[21]
X. K. Xi, D. Q. Zhao, M. X. Pan, W. H. Wang, Y. Wu, J. J. Lewandowski, Fracture of brittle metallic glasses: brittleness or plasticity, J. Physical review letters, 94(2005): 125510.
DOI: 10.1103/physrevlett.94.125510
Google Scholar
[22]
R. D. Conner, A. J. Rosakis, W. L. Johnson, D. M. Owen, Fracture toughness determination for a beryllium-bearing bulk metallic glass, J. Scripta Materialia, 37(1997): 1373-1378.
DOI: 10.1016/s1359-6462(97)00250-9
Google Scholar
[23]
C. H. Shek, G. M. Lin, K. L. Lee, J. K. L. Lai, Fractal fracture of amorphous Fe46Ni32V2Si14B6 alloy, J. Journal of non-crystalline solids, 224(1998): 244-248.
DOI: 10.1016/s0022-3093(97)00483-3
Google Scholar
[24]
Á. Révész, A. Concustell, L.K. Varga, S. Suriñach, M.D. Baró, Influence of the wheel speed on the thermal behaviour of Cu60Zr20Ti20 alloys, Mater. Sci. Eng. A. 375(2004) 776-780.
DOI: 10.1016/j.msea.2003.10.151
Google Scholar