Effect of Laser Shock Peening on the Surface Morphology of Metallic Glasses

Article Preview

Abstract:

Laser shock peening is a promising effective approach for improving mechanical properties of metallic glass. In this work, laser shock peening was employed to study the surface morphologies of metallic glasses with different toughness. Numerous localized circular-or arc-shaped structures, with the size of 5~20 μm, were observed in the shock treated surface. The number of these unique localized structures has a close correlation to the ability of metallic glass to accommodate plastic deformation. In addition, the surface morphology evolution of Zr-based metallic glasses with different crystalline degrees is also discussed, indicating that the circular-or arc-shaped structures only appear in fully amorphous system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

689-695

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Klement, R.H. Willens, P. Duwez, Non-crystalline structure in solidified gold-silicon alloys, Nature. 187(1960) 869–870.

DOI: 10.1038/187869b0

Google Scholar

[2] W. H. Wang, C. Dong, C. H. Shek, Bulk metallic glasses, J. Materials Science and Engineering: R: Reports, 44(2004): 45-89.

DOI: 10.1016/j.mser.2004.03.001

Google Scholar

[3] D. Chen, A. Takeuchi, A. Inoue, Gd–Co–Al and Gd–Ni–Al bulk metallic glasses with high glass forming ability and good mechanical properties, J. Materials Science and Engineering: A, 457(2007): 226-230.

DOI: 10.1016/j.msea.2006.12.028

Google Scholar

[4] X. Tong, G. Wang, Z. H. Stachurski, J. Bednarcik, N. Mattern, Q. J. Zhai, J. Eckert, Structural evolution and strength change of a metallic glass at different temperatures, J. Scientific Reports, 6(2016).

DOI: 10.1038/srep30876

Google Scholar

[5] B.Q. Chen, Y. Li, M. Yi, R. Li, S.J. Pang, H. Wang, T. Zhang, Optimization of mechanical properties of bulk metallic glasses by residual stress adjustment using laser surface melting, J. ScriptaMaterialia, 66(2012): 1057-1060.

DOI: 10.1016/j.scriptamat.2012.02.046

Google Scholar

[6] M. L. M. Sistiaga, R. Mertens, B. Vrancken, X. Wang, B. V. Hooreweder, J. P. Kruth, J.V. Humbeeck, Changing the alloy composition of Al7075 for better processability by selective laser melting, J. Journal of Materials Processing Technology, 2016, 238(2016).

DOI: 10.1016/j.jmatprotec.2016.08.003

Google Scholar

[7] S. González, J. Fornell, E. Pellicer, S. Suriñach, M. D. Baró, A. L. Greer, F. J. Belzunce, J. Sort, Influence of the shot-peening intensity on the structure and near-surface mechanical properties of Ti40Zr10Cu38Pd12 bulk metallic glass, J. Applied Physics Letters, 103(2013).

DOI: 10.1063/1.4833017

Google Scholar

[8] J. Fornell, A. Concustell, A. L. Greer, S. Suriñach, M. D. Baró, J. Sort, Effects of shot peening on the nanoindentation response of Cu 47. 5 Zr 47. 5 Al 5 metallic glass, J. Journal of Alloys and Compounds, 586(2014): S36-S40.

DOI: 10.1016/j.jallcom.2012.12.051

Google Scholar

[9] C. S. Montross, T. Wei, L. Ye, G. Clark, Y. W. Mai, Laser shock processing and its effects on microstructure and properties of metal alloys: a review, J. International Journal of Fatigue, 24(2002): 1021-1036.

DOI: 10.1016/s0142-1123(02)00022-1

Google Scholar

[10] Y. Cao, X. Xie, J. Antonaglia, B. Winiarski, G. Wang, Y. C. Shin, P. J. Withers, K. A. Dahmen, P. K. Liaw, Laser shock peening on Zr-based bulk metallic glass and its effect on plasticity: experiment and modeling, J. Scientific reports, 5(2015).

DOI: 10.1038/srep10789

Google Scholar

[11] L. Wang, L. Wang, Z. H. Nie, Y. Ren, Y. F. Xue, R. H. Zhu, H.F. Zhang, H. M. Fu, Evolution of residual stress, free volume, and hardness in the laser shock peened Ti-based metallic glass, J. Materials & Design, 111(2016): 473-481.

DOI: 10.1016/j.matdes.2016.09.017

Google Scholar

[12] Y. Zhang, W. H. Wang, A. L. Greer, Making metallic glasses plastic by control of residual stress, J. Nature materials, 5(2016): 857-860.

DOI: 10.1038/nmat1758

Google Scholar

[13] C. H. Li, Q. Q. Duan, Z. F. Zhang, Tearing Toughness of Ductile Metals, J. Acta Metallurgica Sinica (English letters), 29(2016): 150-155.

DOI: 10.1007/s40195-016-0371-8

Google Scholar

[14] G. Li, M. Q. Jiang, F. Jiang, L. He, J. Sun, The ductile to brittle transition behavior in a Zr-based bulk metallic glass, J. Materials Science and Engineering: A, 625(2015): 393-402.

DOI: 10.1016/j.msea.2014.11.088

Google Scholar

[15] Y. H. Sun, Inverse ductile–brittle transition in metallic glasses, J. Materials Science and Technology, 31(2015): 635-650.

DOI: 10.1179/1743284714y.0000000684

Google Scholar

[16] D. C. Hofmann, J. Y. Suh, A. Wiest, G. Duan, M. L. Lind, M. D. Demetriou, W. L Johnson, Designing metallic glass matrix composites with high toughness and tensile ductility, J. Nature, 451(2008): 1085-1089.

DOI: 10.1038/nature06598

Google Scholar

[17] T. Lu, L. Xia, Z. Hu, et al. Deformation patterns in Zr-based and Ti-based metallic glasses under scratch processes, J. Scientia Sinica Physica, Mechanica & Astronomica, 42(2012): 603.

DOI: 10.1360/132012-293

Google Scholar

[18] J. Eckert, J. Das, S. Pauly, C. Duhamel, Mechanical properties of bulk metallic glasses and composites, J. Journal of materials research, 22(2007): 285-301.

DOI: 10.1557/jmr.2007.0050

Google Scholar

[19] C. S. Montross, T. Wei, L. Ye, G. Clark, Y. W. Mai, Laser shock processing and its effects on microstructure and properties of metal alloys: a review, J. International Journal of Fatigue, 24(2002): 1021-1036.

DOI: 10.1016/s0142-1123(02)00022-1

Google Scholar

[20] J.N. Johnson, R.W. Rhode, Dynamic deformation twinning in shock loaded iron, J. Journal of Applied Physics 42(1971): 4171–82.

DOI: 10.1063/1.1659750

Google Scholar

[21] X. K. Xi, D. Q. Zhao, M. X. Pan, W. H. Wang, Y. Wu, J. J. Lewandowski, Fracture of brittle metallic glasses: brittleness or plasticity, J. Physical review letters, 94(2005): 125510.

DOI: 10.1103/physrevlett.94.125510

Google Scholar

[22] R. D. Conner, A. J. Rosakis, W. L. Johnson, D. M. Owen, Fracture toughness determination for a beryllium-bearing bulk metallic glass, J. Scripta Materialia, 37(1997): 1373-1378.

DOI: 10.1016/s1359-6462(97)00250-9

Google Scholar

[23] C. H. Shek, G. M. Lin, K. L. Lee, J. K. L. Lai, Fractal fracture of amorphous Fe46Ni32V2Si14B6 alloy, J. Journal of non-crystalline solids, 224(1998): 244-248.

DOI: 10.1016/s0022-3093(97)00483-3

Google Scholar

[24] Á. Révész, A. Concustell, L.K. Varga, S. Suriñach, M.D. Baró, Influence of the wheel speed on the thermal behaviour of Cu60Zr20Ti20 alloys, Mater. Sci. Eng. A. 375(2004) 776-780.

DOI: 10.1016/j.msea.2003.10.151

Google Scholar