[1]
X. Liu, H. Zhang, Y. Han, et al, A semi-empirical model for peak strain prediction of buried X80 steel pipelines under compression and bending at strike-slip fault crossings, J. Nat. Gas Sci. Eng. 32 (2016) 465-475.
DOI: 10.1016/j.jngse.2016.04.054
Google Scholar
[2]
X.K. Zhu, J. A Joyce, Review of fracture toughness (g, k, j, ctod, ctoa) testing and standardization, Eng. Fract. Mech. 85 (2012) 1-46.
DOI: 10.1016/j.engfracmech.2012.02.001
Google Scholar
[3]
AA. Wells, Application of fracture mechanics at and beyond general yielding, Br. Weld. J. 10 (1963) 563-570.
Google Scholar
[4]
B. Zhang, C. Ye, B. Liang, et al, Ductile failure analysis and crack behavior of X65 buried pipes using extended finite element method, Eng. Fail. Anal. 45 (2014) 26-40.
DOI: 10.1016/j.engfailanal.2014.06.009
Google Scholar
[5]
K. Han, J. Shuai, X. Deng, et al, The effect of constraint on CTOD fracture toughness of API X65 steel, Eng. Fract. Mech. 124 (2014) 167-181.
DOI: 10.1016/j.engfracmech.2014.04.014
Google Scholar
[6]
X.B. Yang, Z. Zhuang, X.C. You, et al, Dynamic fracture study by an experiment/simulation method for rich gas transmission X80 steel pipelines, Eng. Fract. Mech. 75 (2008) 5018-5028.
DOI: 10.1016/j.engfracmech.2008.06.032
Google Scholar
[7]
Y. Di, J. Shuai, J. Wang, S. Tu, A new specimen for high-grade pipeline steels CTOA test, Eng. Fract. Mech. 148 (2015) 203-212.
DOI: 10.1016/j.engfracmech.2015.06.088
Google Scholar
[8]
J.Q. Wang, J. Shuai, Measurement and analysis of crack tip opening angle in pipeline steels, Eng. Fract. Mech. 79 (2014) 36–49.
DOI: 10.1016/j.engfracmech.2011.09.018
Google Scholar
[9]
C.S. Oh, N.H. Kim, Y.J. Kim, et al, A finite element ductile failure simulation method using stress-modified fracture strain model, Eng. Fract. Mech. 78 (2011) 124-137.
DOI: 10.1016/j.engfracmech.2010.10.004
Google Scholar
[10]
N.H. Kim, C.S. Oh, Y.J. Kim, et al, Comparison of fracture strain based ductile failure simulation with experimental results, Int. J. Pres. Ves. Pip. 88 (2011) 434-447.
DOI: 10.1016/j.ijpvp.2011.07.006
Google Scholar
[11]
C.K. Oh, Y.J. Kim, J.H. Baek, Ductile failure analysis of API X65 pipes with notch-type defects using a local fracture criterion, Int. J. Pres. Ves. Pip. 84 (2007) 512-525.
DOI: 10.1016/j.ijpvp.2007.03.002
Google Scholar
[12]
BS7448. Part 1: method for determining of KIc, critical crack tip opening displacement (CTOD) and critical J values of fracture toughness for metallic materials under displacement controlled monotonic loading at quasistatic rates. London: British Standards Institution; (1991).
DOI: 10.1520/e1290-02
Google Scholar
[13]
T. Liu, Y.F. Gao, Y. Li, et al, Metallic materials–Unified method of test for determination of quasistatic fracture toughness. GB/T21143-2007, China Standard Press, Beijing.
Google Scholar