[1]
T Tamano, T Mimaki, S Yaganimoto. New empirical formula for collapse resistance of commercial casing, C. Proceedings of the 2nd International Off-shore Mechanics and Arctic Engineering Symposium. Houston: ASME. (1983) 489-495.
Google Scholar
[2]
M K Yeh, S Kyriakides. On the Collapse of Inelastic Thick-Walled Tubes Under External Pressure, J. Journal of Energy Resources Technology. 108. 1 (1986) 194-199.
DOI: 10.1115/1.3231239
Google Scholar
[3]
M Yeh, S Kyriakides. Collapse Of Deepwater Pipelines, J. Journal of Energy Resources Technology. 110. 110 (1986) 1-11.
DOI: 10.1115/1.3231355
Google Scholar
[4]
J Y Dyau, S Kyriakides. On the localization of collapse in cylindrical shells under external pressure, J. International Journal of Solids & Structures. 30. 4 (1993) 463-482.
DOI: 10.1016/0020-7683(93)90181-6
Google Scholar
[5]
K Tokimasa, K Tanaka. FEM Analysis of the Collapse Strength of a Tube, J. Journal of Pressure Vessel Technology, 108. 2 (1986) 237-254.
DOI: 10.1115/1.3264764
Google Scholar
[6]
N Sakakibara, S Kyriakides, E Corona. Collapse of partially corroded or worn pipe under external pressure, J. International Journal of Mechanical Sciences. 50. 12 (2008) 1586-1597.
DOI: 10.1016/j.ijmecsci.2008.10.006
Google Scholar
[7]
X Huang, M Mihsein, K Kibble, et al. Collapse strength analysis of casing design using finite element method, J. International Journal of Pressure Vessels & Piping. 77. 7 (2000) 359-367.
DOI: 10.1016/s0308-0161(00)00045-4
Google Scholar
[8]
R G Toscano, D H Johnson, A P Assanelli, et al. Experimental/numerical analysis of the collapse behavior of steel pipes, J. Engineering Computations. 17. 4 (2000) 459-486.
DOI: 10.1108/02644400010334856
Google Scholar
[9]
S R Hauch, Y Bai. Bending Moment Capacity of Pipes, J. Journal of Offshore Mechanics & Arctic Engineering. 122. 4 (2000) 243-252.
DOI: 10.1115/1.1314866
Google Scholar
[10]
S Hauch, Y Bai. Bending Moment Capacity of Groove Corroded Pipes, C. Proceeding of the Tenth International Offshore and Polar Engineering Conference. Seattle, USA, May, (2000).
Google Scholar
[11]
T Y Chen, W J Shao. The general plastic stability theory of ring-stiffened cylindrical shells with large deflection under external hydrostatic pressure and the influence of initial imperfections on their instability, J. Ship Building of China, 3 (1979).
Google Scholar
[12]
Z P Cui, Z H Zhang. Sensitivity analysis of submarine pipeline hydrostatic collapse pressure based on ABAQUS, J . Journal of Ocean Technology. 31. 2 (2012) 73-76.
Google Scholar
[13]
J X Yu, X H Bian, Y Yang, et al. Full-scale collapse test and numerical simulation of deepwater pipeline, J. Journal of Tianjin University (Science and Technology). 45. 2 (2012) 154-159.
Google Scholar
[14]
S F Gong, Y Chen, W L Jin, et al. Local buckling of deepwater oil-gas pipeline under high hydrostatic pressure, J. Journal of Zhejiang University (Engineering Science). 46. 1 (2012) 14-19.
Google Scholar
[15]
X B Liu, H Zhang, M Li, et al. Effects of steel properties on the local buckling response of high strength pipelines subjected to reverse faulting, J. Journal of Nature Gas Science & Engineering, 33 (2016) 378-387.
DOI: 10.1016/j.jngse.2016.05.036
Google Scholar
[16]
X Z Li, Z B Li, J X Yu, et al. Research on the structure reliability based on the collapse of deep sea pipes, J. China Offshore Oil and Gas. 25. 1 (2013) 64-68.
Google Scholar
[17]
P Li, Q J Yue, J F Ma, et al. Influence of machining residual stress on marine pipeline crushing properties, J. Chinese Journal of Applied Mechanics. 33. 1 (2016) 67-72.
Google Scholar
[18]
B Ma, J Shuai, D X Liu, et al. A finite-element-based analysis of the accuracy in bursting tests predicting the ultimate load of a buried pipeline J. Natural Gas Industry. 33. 6 (2013) 108-112.
Google Scholar
[19]
A Sandvik, E Østby, C Taulow. Probabilistic fracture assessment of surface cracked pipes using strain-based approach J. Engineering Fracture Mechanics, 73. 11 (2006) 1491-1509.
DOI: 10.1016/j.engfracmech.2006.01.026
Google Scholar
[20]
D K Karamitros, G D Bouckovalas, G P Kouretzis. Stress analysis of buried steel pipelines at strike-slip fault crossings J. Soil Dynamics & Earthquake Engineering, 27. 3 (2007) 200-211.
DOI: 10.1016/j.soildyn.2006.08.001
Google Scholar
[21]
T A Netto, U S Ferraz, A Botto. On the effect of corrosion defects on the collapse pressure of pipelines J. International Journal of Solids & Structures, 44. 22-23 (2007) 7597-7614.
DOI: 10.1016/j.ijsolstr.2007.04.028
Google Scholar
[22]
T A Netto. On the effect of narrow and long corrosion defects on the collapse pressure of pipelines J. Applied Ocean Research. 31. 2 (2007) 75-81.
DOI: 10.1016/j.apor.2009.07.004
Google Scholar
[23]
Y F Chen, X Li, J Zhou. Limit load capacity of pipes with long longitudinal corrosion J. Journal of Ship Mechanics. 13. 5 (2009) 748-756.
Google Scholar
[24]
C L Su, X Li, J Zhou. Impacts of axial corrosion width on ultimate internal pressure load of pipeline J. Oil & Gas Storage and Transportation. 7 (2014) 723-728.
Google Scholar
[25]
H Deng. Investigation on asymmetric buckling and collapse mechanisms of deepwater submarine pipeline during installation, D. Zhengjiang University. (2011).
Google Scholar