Electrical Resistance Relaxation in La55Al25Ni10Cu10 Bulk Metallic Glass

Article Preview

Abstract:

Electrical resistance is always related to the electronic structure of metallic glass and sensitive to structural changes, which provides a more intuitive approach to investigate structure evolution of metallic glasses upon structural relaxation. Electrical resistance relaxation of the La55Al25Ni10Cu10 bulk metallic glass was studied using the standard four-probe method. The electrical resistance of La55Al25Ni10Cu10 bulk metallic glass decreases significantly with the structural relaxation below the glass transition temperature at 445 K. During the subsequent continuous heating, the relaxed specimen shows a reduction in the resistivity decrease at the glass transition. The relaxed electrical resistance caused by the structural relaxation during the isothermal measurement equals the changes of the electrical resistance reduction in the glass transition region in the subsequent isochronal measurements. The calculated relaxed electrical resistance as a function of the annealing time can be fitted by Kohlrausche-Williams-Watts (KWW) equation. The equilibrium value, time constant and the stretched exponent for the isochronal electrical resistance measurements at 445 K are 0.0384, 2390s and 0.66, respectively. The in-situ electrical resistance data recorded in the isothermal annealing process show the same relaxation behavior with fitting parameters 0.0362, 2033 s, and 0.74, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

696-702

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. J. Fan, J.F. Löffler, R. K. Wunderlich, et. al, Thermodynamics, enthalpy relaxation and fragility of the bulk metallic glass-forming liquid Pd43Ni10Cu27P20, Acta Mater. 52 (2004) 667-669.

DOI: 10.1016/j.actamat.2003.10.003

Google Scholar

[2] C. A. Angell, Formation of Glasses from Liquids and Biopolymers, Science 267 (1995) 1924-(1935).

DOI: 10.1126/science.267.5206.1924

Google Scholar

[3] P. G. Debenedetti, F. H. Stillinger, Supercooled liquids and the glass transition, Nature 410 (2001) 259-267.

DOI: 10.1038/35065704

Google Scholar

[4] J. C. Qiao, J. M. Pelletier, H. C. Kou, et. al, Modification of atomic mobility in a Ti-based bulk metallic glass by plastic deformation or thermal annealing, Intermetallics 28(2012) 128-137.

DOI: 10.1016/j.intermet.2012.04.004

Google Scholar

[5] J. C. Qiao, J. M. Pelletier, Enthalpy relaxation in Cu46Zr45Al7Y2 and Zr55Cu30Ni5Al10 bulk metallic glasses by differential scanning calorimetry (DSC), Intermetallics 19 (2011) 9-18.

DOI: 10.1016/j.intermet.2010.08.042

Google Scholar

[6] L. Hu, F. Ye, Y. F. Liang, et. al, Correlating the supercooled liquid region width with the fragility parameter in bulk metallic glasses, Appl. Phys. Lett. 100 (2012) 21906.

DOI: 10.1063/1.3675910

Google Scholar

[7] T. Zhang, F. Ye, Y. L. Wang, et. al, Structural Relaxation of La55Al25Ni10Cu10 Bulk Metallic Glass Metall. Mater. Trans. A 39 (2008) 1953-(1957).

DOI: 10.1007/s11661-007-9369-1

Google Scholar

[8] R. Busch, W. Liu, W. L. Johnson, Thermodynamics and kinetics of the Mg65Cu25Y10 bulk metallic glass forming liquid, J. Appl. Phys. 83 (1998) 4134-4141.

DOI: 10.1063/1.367167

Google Scholar

[9] R. Busch, E. Bakke, W. L. Johnson, Viscosity of the supercooled liquid and relaxation at the glass transition of the Zr46. 75Ti8. 25Cu7. 5Ni10Be27. 5 bulk metallic glass forming alloy, Acta Mater. 46 (1998) 4725-4732.

DOI: 10.1016/s1359-6454(98)00122-0

Google Scholar

[10] Z. P. Lu, T. T. Goh, Y. Li, et. al, Glass formation in La-based La-Al-Ni-Cu-(Co) alloys by Bridgman solidification and their glass forming ability, Acta Mater. 47(1999) 2215-2224.

DOI: 10.1016/s1359-6454(99)00058-0

Google Scholar

[11] R. Busch, W.L. Johnson, The kinetic glass transition of the Zr46. 75Ti8. 25Cu7. 5Ni10Be27. 5 bulk metallic glass former-supercooled liquids on a long time scale, Appl. Phys. Lett. 72 (1998) 2695-2697.

DOI: 10.1063/1.121102

Google Scholar

[12] C. -H. Lin, J. Bevk, D. Turnbull, Effect of structural relaxation on the electrical resistivity of Pd82-x-Vx-Si18 amorphous alloys, Solid State Commun. 29 (1979) 641-644.

DOI: 10.1016/0038-1098(79)91192-x

Google Scholar

[13] K.F. Kelton, F. Spaepen, Kinetics of structural relaxation in several metallic glasses observed by changes in electrical resistivity, Phys. Rev. B 30 (1984) 5516-5524.

DOI: 10.1103/physrevb.30.5516

Google Scholar

[14] S.V. Khonik, L.D. Kaverin, N.P. Kobelev, et. al, The kinetics of structural relaxation of bulk and ribbon glassy Pd40Cu30N10P20 monitored by resistance and density measurements, J. non-cryst. solids. 354 (2008) 3896-3902.

DOI: 10.1016/j.jnoncrysol.2008.05.024

Google Scholar

[15] S.V. Khonik, A.S. Makarov, K.M. Podurets, et. al, Comparative study of relaxation behavior of glassy usual" Pd40Cu30Ni10P20 and "unusual, Pd40Cu40P20 by measurements of the electrical resistance, Intermetallics 20 (2012) 170-172.

DOI: 10.1016/j.intermet.2011.08.006

Google Scholar

[16] O. Haruyama, H.M. Kimura, N. Nishiyama, et. al, Isothermal Relaxation Behavior in a Pd42. 5Cu30Ni7. 5P20 Metallic Glass, Mater. Trans. JIM 45 (2004) 1184-1188.

Google Scholar

[17] O. Haruyama, M. Tando, H.M. Kimura , et. al, Structural relaxation process in a bulk Pd40Cu30Ni10P20 metallic glass with a high Kauzmann temperature, J. Non-Cryst. Solids 312-314 (2002) 603-607.

DOI: 10.1016/s0022-3093(02)01793-3

Google Scholar

[18] J. Sietsma, M. Baricco, Direct evidence of two different structural relaxation processes in amorphous FeNiCrPB, Mater. Sci. Eng. A 133 (1991) 518-522.

DOI: 10.1016/b978-0-444-89107-5.50125-8

Google Scholar

[19] N. Mattern, J. Sakowski, U. Kühn, et. al, Structural behavior and glass transition of bulk metallic glasses, J. Non-Cryst. Solids 345-346 (2004) 758-761.

DOI: 10.1016/j.jnoncrysol.2004.08.197

Google Scholar

[20] T. Komatsu, M. Takeuchi, K. Matusita, et. al, Study of structural relaxation of Ni78Si8B14 metallic glass by electrical resistivity and thermal expansion measurements, J. Non-Cryst. Solids 57 (1983) 129-136.

DOI: 10.1016/0022-3093(83)90415-5

Google Scholar