Properties of Ni0.5Zn0.5Fe2O4/Fe76Si9B10P5 Bulk Soft Magnetic Composites by Annealing Treatment

Article Preview

Abstract:

Iron-based amorphous alloys have attracted technological and scientific interests due to their excellent soft magnetic properties. In the present study, Ni0.5Zn0.5Fe2O4/Fe76Si9B10P5 soft magnetic composites cylinder of 15 mm diameter and 3 mm thickness was prepared by spark plasma sintering at the temperature of 780 K. The amorphous Fe-based soft magnetic composites Ni0.5Zn0.5Fe2O4/Fe76Si9B10P5 exhibited good magnetic properties after annealing treatment at temperature ranging from 643 K to 743 K. The beneficial effects of treatment under different temperatures were discussed in terms of the improved magnetic performance of Ni0.5Zn0.5Fe2O4/Fe76Si9B10P5 soft magnetic composites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

684-688

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. K. Zhao, K. F. Yao, J. F. Li, A bulk metal/ceramic bulk composite materal with a celluar structure, Chin Sci Bull. 51 (2006), 235-239.

DOI: 10.1007/s11434-004-0491-9

Google Scholar

[2] W. Ding, L. T. Jiang, B. Q. Li, et al., Microstructure and magnetic properties of Soft Magnetic Composites with silicate glass insulation layers, Supercond Nov Magn. 27 (2014), 239-245.

DOI: 10.1007/s10948-013-2249-6

Google Scholar

[3] S. Wu, A. Sun, W. Xu, et al., Iron-based soft magnetic composites with Mn–Zn ferrite nanoparticles coating obtained by sol–gel method, Journal of Magnetism and Magnetic Materials. 324 (2012), 3899-3905.

DOI: 10.1016/j.jmmm.2012.06.042

Google Scholar

[4] C. Wu, H. Chen, H. Lv, et al., Interplay of crystallization, stress relaxation and magnetic properties for FeCuNbSiB soft magnetic composites, Journal of Alloys and Compounds. 673 (2016), 278-282.

DOI: 10.1016/j.jallcom.2016.02.239

Google Scholar

[5] Z. Zhao, C. Chang, A. Makino, et al., Preparation of bulk glassy Fe76Si9B10P5 as a soft magnetic material by spark plasma sintering, Materials transactions. 50 (2009), 487-489.

Google Scholar

[6] X. Li, G. Lu, Z. Zhang, et al., Bulk amorphous powder cores with low core loss by spark-plasma sintering Fe76Si9. 6B8. 4P6 amorphous powder with small amounts of SiO2, Journal of Alloys and Compounds. 647 (2015), 917-920.

DOI: 10.1016/j.jallcom.2015.05.139

Google Scholar

[7] X. Li, A. Makino, H. Kato, et al., Fe76Si9. 6B8. 4P6 glassy powder soft-magnetic cores with low core loss prepared by spark-plasma sintering, Materials Science and Engineering. B, 176 (2011), 1247-1250.

DOI: 10.1016/j.mseb.2011.06.017

Google Scholar

[8] V. Fei, Y. Zhang, Z. Yang, et al., Synthesis and magnetic properties of hard magnetic (CoFe2O4)–soft magnetic (Fe3O4) nano-composite ceramics by SPS technology, Journal of Magnetism and Magnetic Materials. 323 (2011), 1811-1816.

DOI: 10.1016/j.jmmm.2011.02.014

Google Scholar

[9] M. Wang, Z. Zan, N. Deng, et al., Preparation of pure iron/Ni–Zn ferrite high strength soft magnetic composite by spark plasma sintering, Journal of Magnetism and Magnetic Materials. 361 (2014), 166-169.

DOI: 10.1016/j.jmmm.2014.02.055

Google Scholar

[10] R. Chaim, Electric field effects during spark plasma sintering of ceramic nanoparticles, J Mater Sci. 48 (2013), 502-510.

DOI: 10.1007/s10853-012-6764-9

Google Scholar

[11] C. P. Zhong, Z. Zhu, Y. Huang, Preparation and soft magnetic properties of composite magnetic cores of Fe-based nanocrystalline and ferrite, Journal of Functional Materials. 11 (2008), 008.

Google Scholar

[12] K. Hirota, Y. Takano, M. Yoshinaka, et al., A new composite material with high saturation magnetization density and high electrical resistivity, Materials research bulletin. 35 (2000), 137-1141.

DOI: 10.1016/s0025-5408(00)00308-1

Google Scholar

[13] N. Lupu, M. Grigoras, M. Lostun, et al., Nd2Fe14B/soft magnetic wires nanocomposite magnets with enhanced properties, Journal of Applied Physics. 105 (2009), 07A738.

DOI: 10.1063/1.3073932

Google Scholar

[14] G. Xie, D. V. Louzguine-Luzgin, H. Kimura, et al., Microstructure and mechanical properties of crystalline particulates dispersed Ni-based metallic glassy composites fabricated by spark plasma sintering, Intermetallics. 18 (2010), 851-858.

DOI: 10.1016/j.intermet.2009.12.023

Google Scholar

[15] Z. Xiao, C. Tang, H. Zhao, et al., Effects of sintering temperature on microstructure and property evolution of Fe81Cu2Nb3Si14 soft magnetic materials fabricated from amorphous melt-spun ribbons by spark plasma sintering technique, Journal of Non-Crystalline Solids. 358 (2012).

DOI: 10.1016/j.jnoncrysol.2011.09.001

Google Scholar

[16] B. V. Neamţu, T. F. Marinca, I. Chicinaş, et al., Preparation and soft magnetic properties of spark plasma sintered compacts based on Fe–Si–B glassy powder, Journal of Alloys and Compounds. 600 (2014), 1-7.

DOI: 10.1016/j.jallcom.2014.02.115

Google Scholar

[17] H. Wang, Y. Liu, X. Pan, et al., Structure and magnetic properties of bulk Fe56Co7Ni7Zr10B20 magnetic alloy fabricated by spark plasma sintering , Journal of Alloys and Compounds. 477 (2009), 291-294.

DOI: 10.1016/j.jallcom.2008.11.014

Google Scholar

[18] T. Liu, M. G. Wang, Z. K. Zhao, High frequency properties of Fe73. 5Cu1Nb3Si13. 5B9/Zn0. 5Ni0. 5Fe2O4 soft magnetic composite with micro-cellular structure, Science China Physics, Mechanics and Astronomy. 55 (2012), 2392-2396.

DOI: 10.1007/s11433-012-4920-5

Google Scholar

[19] J. Gurt Santanach, A. Weibel, C. Estournès, et al., Spark plasma sintering of alumina: Study of parameters, formal sintering analysis and hypotheses on the mechanism (s) involved in densification and grain growth, Acta Materialia. (59) 2011, 400-1408.

DOI: 10.1016/j.actamat.2010.11.002

Google Scholar

[20] M. Strečková, Ľ. Medvecký, J. Füzer, et al., Design of novel soft magnetic composites based on Fe/resin modified with silica, Materials Letters. 101 (2013), 37-40.

DOI: 10.1016/j.matlet.2013.03.067

Google Scholar