[1]
C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Mechanical behavior of amorphous alloys, Acta Mater. 55 (2007) 4067-4109.
DOI: 10.1016/j.actamat.2007.01.052
Google Scholar
[2]
W.H. Wang, Bulk metallic glasses with functional physical properties, Adv. Mater. 21 (2009) 4524-4542.
Google Scholar
[3]
D.E. Polk, A. Calka, B.C. Giessen, The preparation and thermal and mechanical properties of new titanium rich metallic glasses, Acta Metall. Mater. 26(1978)1097-1103.
DOI: 10.1016/0001-6160(78)90137-2
Google Scholar
[4]
L.E. Tanner,R. Ray, Metallic glass formation and properties in Zr and Ti alloyed with Be, the binary Zr-Be and Ti-Be system, Mater. Trans. 27(1979)1727-1747.
DOI: 10.1016/0001-6160(79)90087-7
Google Scholar
[5]
A. Inoue, H.M. Kimura, T. Masumoto, Superconductivity of ductile Ti-Nb-Si amorphous alloy, J. Appl. Phys. 51(1980)5475-5482.
DOI: 10.1063/1.327506
Google Scholar
[6]
X. Wang, Y. Shao, P. Gong, K.F. Yao, The effect of simulated thermal cycling on thermal and mechanical stability of a Ti-based bulk metallic glass, J Alloys Compd. 575(2013)449-454.
DOI: 10.1016/j.jallcom.2013.05.194
Google Scholar
[7]
P. Gong K.F. Yao,Y. Shao, Effects of Fe addition on glass-forming ability and mechanical properties of Ti-Zr-Be bulk metallic glass, J Alloys Compd. 536(2012)26-29.
DOI: 10.1016/j.jallcom.2012.04.048
Google Scholar
[8]
T. Wang, Y.D. Wu, J.J. Si, Y.H. Cai, X.H. Chen, X.D. Hui, Novel Ti-based bulk metallic glasses with superior plastic yielding strength and corrosion resistance, Mater Sci Eng C. 642(2015)297-303.
DOI: 10.1016/j.msea.2015.05.060
Google Scholar
[9]
Y. Liu, G. Wang, H.F. Li, S.J. Pang, K.W. Chen, T. Zhang, Ti-Cu-Zr-Fe-Sn-Si-Sc bulk metallic glasses with good mechanical properties for biomedical applications, J Alloys Compd. 679(2016) 341-349.
DOI: 10.1016/j.jallcom.2016.03.224
Google Scholar
[10]
J. Chen, J.Z. Wang, B.B. Chen, F.Y. Yan, Tribocorrosion behaviors of inconel 625 alloy sliding against 316 steel in seawater, Tribo. Trans. 54(2011)514-522.
DOI: 10.1080/10402004.2011.571362
Google Scholar
[11]
Y. Wu, Y.H. Xiao, G.L. Chen, C.T. Liu, Z.P. Lu, Bulk metallic glass composites with Transformation-Mediated Working-Hard and Ductility, Adv. Mater. 22(2010)2770-3.
DOI: 10.1002/adma.201000482
Google Scholar
[12]
Y. Wu,D. Ma,Q.K. Li,A.D. Stoica W.L. Song,H. Wang X.J. Liu G.M. Stoica G.Y. Wang,K. An, Transformation-induced plasticity in bulk metallic glass composites evidenced by in-situ neutron diffraction, Acta Mater. 124(2017)478-488.
DOI: 10.1016/j.actamat.2016.11.029
Google Scholar
[13]
Y. Wu,H. Bei Y.L. Wang Z.P. Lu,E.P. George Y.F. Gao, Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass, Int J Plasticity. 71(2015)136-145.
DOI: 10.1016/j.ijplas.2015.05.006
Google Scholar
[14]
E. Poorqasemi,O. Abootalebi,M. Peikari, F. Haqdar, Investigating accuracy of the Tafel extrapolation method in HCl solutions, Corros Sci. 51(2009)1043-1054.
DOI: 10.1016/j.corsci.2009.03.001
Google Scholar
[15]
S.F. Guo, K.C. Chan, S.H. Xie, P. Yu, Y.J. Huang, H.J. Zhang, Novel centimeter-sized Fe-based bulk metallic glass with high corrosion resistance in simulated acid rain and seawater, J. Non-Crystalline Solids. 369(2013)29-33.
DOI: 10.1016/j.jnoncrysol.2013.02.026
Google Scholar