[1]
Z.D. Liu, X.C. Zhang, F.Z. Xuan, et al., In situ synthesis of TiN/Ti3Al intermetallic matrix composite coatings on Ti6Al4V alloy, Mater. Design 37 (2012) 268-273.
DOI: 10.1016/j.matdes.2011.12.008
Google Scholar
[2]
Y. F. Liu, Y.L. Zhou, Q. Zhang, et al., Microstructure and dry sliding wear behavior of plasma transferred arc clad Ti5Si3 reinforced intermetallic composite coatings, J. Alloys Compd. 591 (2014) 251-258.
DOI: 10.1016/j.jallcom.2013.12.225
Google Scholar
[3]
R.L. Sun, Lei Y.W., W. Niu, Laser clad TiC reinforced NiCrBSi composite coatings on Ti–6Al–4V alloy using a CW CO2 laser, Surf. Coat. Technol. 203 (2009) 1395–1399.
DOI: 10.1016/j.surfcoat.2008.11.012
Google Scholar
[4]
R. Jendrzejewski, C. Navas, A. Conde, et al., Properties of laser-cladded stellite coatings prepared on preheated chromium steel, Mater. Des. 29 (2008)187–192.
DOI: 10.1016/j.matdes.2006.10.020
Google Scholar
[5]
Y.S. Tian, C.Z. Chen, S.T. Li, et al., Research progress on laser surface modification of titanium alloys, Appl. Surf. Sci. 242 (2005)177–184.
Google Scholar
[6]
C. Huang, Y. Zhang, R. Vilar, Microstructure and anti-oxidation behavior of laser clad Ni–20Cr coating on molybdenum surface, Surf. Coat. Technol. 205 (2010) 835–840.
DOI: 10.1016/j.surfcoat.2010.08.021
Google Scholar
[7]
T.M. Yue, T. Li, X. Lin, Microstructure and phase evolution in laser cladding of Ni/Cu/Al multilayer on magnesium substrate, Metall. Mater. Trans. A 41 (2010) 212-223.
DOI: 10.1007/s11661-009-0065-1
Google Scholar
[8]
J.W. Yeh, S.K. Chen, S.J. Lin, et al., Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater. 6 (2004) 299-303.
DOI: 10.1002/adem.200300567
Google Scholar
[9]
H. Zhang, W. Wu, Y. He, et al., Formation of core–shell structure in high entropy alloy coating by laser cladding, Appl. Surf. Sci. 363 (2016) 543-547.
DOI: 10.1016/j.apsusc.2015.12.059
Google Scholar
[10]
H. Zhang, Y.Z. He, Y. Pan, et al., Phase selection, microstructure and properties of laser rapidly solidified FeCoNiCrAl2Si coating, Intermetallics 19 (2011) 1130-1135.
DOI: 10.1016/j.intermet.2011.03.017
Google Scholar
[11]
H. Zhang, Y. Pan, Y.Z. He, Synthesis and characterization of FeCoNiCrCu high-entropy alloy coating by laser cladding, Mater. Design 32 (2011) 1910-(1915).
DOI: 10.1016/j.matdes.2010.12.001
Google Scholar
[12]
H. Zhang, Y.Z. He, Y. Pan, et al., Thermally stable laser cladded CoCrCuFeNi high-entropy alloy coating with low stacking fault energy, J. Alloys Compd. 600 (2014) 210-214.
DOI: 10.1016/j.jallcom.2014.02.121
Google Scholar
[13]
H. Zhang, Y. Pan, Y.Z. He, Grain refinement and boundary misorientation transition by annealing in the laser rapid solidified 6FeNiCoCrAlTiSi multicomponent ferrous alloy coating, Surf. Coat. Technol. 205 (2011) 4068-4072.
DOI: 10.1016/j.surfcoat.2011.02.054
Google Scholar
[14]
S. Zhang, C.L. Wu, J.Z. Yi, et al., Synthesis and characterization of FeCoCrAlCu high-entropy alloy coating by laser surface alloying, Surf. Coat. Technol. 262 (2015) 64-69.
DOI: 10.1016/j.surfcoat.2014.12.013
Google Scholar
[15]
X.T. Liu, W.B. Lei, J. Li, et al. Laser cladding of high-entropy alloy on H13 steel, Rare Metals 33 (2014) 727-730.
DOI: 10.1007/s12598-014-0403-3
Google Scholar
[16]
X. Ji, H. Duan, H. Zhang, et al., Slurry Erosion Resistance of Laser Clad NiCoCrFeAl3 High-Entropy Alloy Coatings, Tribol. T. 58 (2015) 1119-1123.
DOI: 10.1080/10402004.2015.1044148
Google Scholar
[17]
C. Huang, Y. Zhang, J. Shen, et al., Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V alloy, Surf. Coat. Technol. 206 (2011) 1389-1395.
DOI: 10.1016/j.surfcoat.2011.08.063
Google Scholar
[18]
C. Huang, Y. Zhang, R. Vilar, et al., Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate, Mater. Design 2012, 41: 338-343.
DOI: 10.1016/j.matdes.2012.04.049
Google Scholar
[19]
Y. Shon, S.S. Joshi, S. Katakam, et al., Laser additive synthesis of high entropy alloy coating on aluminum: Corrosion behavior, Mater. Lett. 142 (2015) 122-125.
DOI: 10.1016/j.matlet.2014.11.161
Google Scholar
[20]
S. Katakam, S.S. Joshi, S. Mridha, et al., Laser assisted high entropy alloy coating on aluminum: Microstructural evolution, J. Appl. Phys. 116 (2014) 104906.
DOI: 10.1063/1.4895137
Google Scholar
[21]
T.M. Yue, H. Xie, X. Lin, et al., Solidification behaviour in laser cladding of AlCoCrCuFeNi high-entropy alloy on magnesium substrates, J. Alloys Compd. 587 (2014) 588-593.
DOI: 10.1016/j.jallcom.2013.10.254
Google Scholar
[22]
Z.B. Cai, G. Jin, X.F. Cui, et al., Experimental and simulated data about microstructure of a NiCrCoTiV high-entropy alloy prepared by vacuum hot-pressing sintering, Vacuum 124 (2016) 5-10.
DOI: 10.1016/j.vacuum.2015.11.007
Google Scholar
[23]
R. Filip, J. Sieniawski, E. Pleszakov, Formation of surface layers on Ti–6Al–4V titanium alloy by laser alloying, Surf. Eng. 22(1) (2006) 53-57.
DOI: 10.1179/174329406x84967
Google Scholar