In Situ Laser Synthesis of High Entropy Alloy Coating on Ti-6Al-4V Alloy: Characterization of Microstructure and Properties

Article Preview

Abstract:

In order to improve the surface properties of Ti-6Al-4V, high-entropy alloy coatings were prepared by in-situ laser cladding on the surface of Ti-6Al-4V substrate. The microstructure, micro-hardness, corrosion resistance and wear resistance were investigated. The results showed that the high-entropy alloy coating was composed of BCC high-entropy alloy phase, α-Ti phase and (Ni, Co)Ti2 phase. The micro-hardness of the high-entropy alloy coatings is much higher than that of Ti-6Al-4V substrate. The coating also has a better corrosion resistance than Ti-6Al-4V substrate, even superior to 304SS in 3.5wt.% NaCl solution at room temperature. Compared with Ti-6Al-4V substrate, the high-entropy alloy coating has a greater wear resistance with the wear mass loss decreased 28.2% and 23.1%, respectively. Wear patterns of Ti-6Al-4V substrate and high-entropy alloy coatings are the coexistence of adhesive wear and abrasive wear, but the wear degree of high-entropy alloy coatings is lower.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

643-650

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z.D. Liu, X.C. Zhang, F.Z. Xuan, et al., In situ synthesis of TiN/Ti3Al intermetallic matrix composite coatings on Ti6Al4V alloy, Mater. Design 37 (2012) 268-273.

DOI: 10.1016/j.matdes.2011.12.008

Google Scholar

[2] Y. F. Liu, Y.L. Zhou, Q. Zhang, et al., Microstructure and dry sliding wear behavior of plasma transferred arc clad Ti5Si3 reinforced intermetallic composite coatings, J. Alloys Compd. 591 (2014) 251-258.

DOI: 10.1016/j.jallcom.2013.12.225

Google Scholar

[3] R.L. Sun, Lei Y.W., W. Niu, Laser clad TiC reinforced NiCrBSi composite coatings on Ti–6Al–4V alloy using a CW CO2 laser, Surf. Coat. Technol. 203 (2009) 1395–1399.

DOI: 10.1016/j.surfcoat.2008.11.012

Google Scholar

[4] R. Jendrzejewski, C. Navas, A. Conde, et al., Properties of laser-cladded stellite coatings prepared on preheated chromium steel, Mater. Des. 29 (2008)187–192.

DOI: 10.1016/j.matdes.2006.10.020

Google Scholar

[5] Y.S. Tian, C.Z. Chen, S.T. Li, et al., Research progress on laser surface modification of titanium alloys, Appl. Surf. Sci. 242 (2005)177–184.

Google Scholar

[6] C. Huang, Y. Zhang, R. Vilar, Microstructure and anti-oxidation behavior of laser clad Ni–20Cr coating on molybdenum surface, Surf. Coat. Technol. 205 (2010) 835–840.

DOI: 10.1016/j.surfcoat.2010.08.021

Google Scholar

[7] T.M. Yue, T. Li, X. Lin, Microstructure and phase evolution in laser cladding of Ni/Cu/Al multilayer on magnesium substrate, Metall. Mater. Trans. A 41 (2010) 212-223.

DOI: 10.1007/s11661-009-0065-1

Google Scholar

[8] J.W. Yeh, S.K. Chen, S.J. Lin, et al., Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater. 6 (2004) 299-303.

DOI: 10.1002/adem.200300567

Google Scholar

[9] H. Zhang, W. Wu, Y. He, et al., Formation of core–shell structure in high entropy alloy coating by laser cladding, Appl. Surf. Sci. 363 (2016) 543-547.

DOI: 10.1016/j.apsusc.2015.12.059

Google Scholar

[10] H. Zhang, Y.Z. He, Y. Pan, et al., Phase selection, microstructure and properties of laser rapidly solidified FeCoNiCrAl2Si coating, Intermetallics 19 (2011) 1130-1135.

DOI: 10.1016/j.intermet.2011.03.017

Google Scholar

[11] H. Zhang, Y. Pan, Y.Z. He, Synthesis and characterization of FeCoNiCrCu high-entropy alloy coating by laser cladding, Mater. Design 32 (2011) 1910-(1915).

DOI: 10.1016/j.matdes.2010.12.001

Google Scholar

[12] H. Zhang, Y.Z. He, Y. Pan, et al., Thermally stable laser cladded CoCrCuFeNi high-entropy alloy coating with low stacking fault energy, J. Alloys Compd. 600 (2014) 210-214.

DOI: 10.1016/j.jallcom.2014.02.121

Google Scholar

[13] H. Zhang, Y. Pan, Y.Z. He, Grain refinement and boundary misorientation transition by annealing in the laser rapid solidified 6FeNiCoCrAlTiSi multicomponent ferrous alloy coating, Surf. Coat. Technol. 205 (2011) 4068-4072.

DOI: 10.1016/j.surfcoat.2011.02.054

Google Scholar

[14] S. Zhang, C.L. Wu, J.Z. Yi, et al., Synthesis and characterization of FeCoCrAlCu high-entropy alloy coating by laser surface alloying, Surf. Coat. Technol. 262 (2015) 64-69.

DOI: 10.1016/j.surfcoat.2014.12.013

Google Scholar

[15] X.T. Liu, W.B. Lei, J. Li, et al. Laser cladding of high-entropy alloy on H13 steel, Rare Metals 33 (2014) 727-730.

DOI: 10.1007/s12598-014-0403-3

Google Scholar

[16] X. Ji, H. Duan, H. Zhang, et al., Slurry Erosion Resistance of Laser Clad NiCoCrFeAl3 High-Entropy Alloy Coatings, Tribol. T. 58 (2015) 1119-1123.

DOI: 10.1080/10402004.2015.1044148

Google Scholar

[17] C. Huang, Y. Zhang, J. Shen, et al., Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V alloy, Surf. Coat. Technol. 206 (2011) 1389-1395.

DOI: 10.1016/j.surfcoat.2011.08.063

Google Scholar

[18] C. Huang, Y. Zhang, R. Vilar, et al., Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate, Mater. Design 2012, 41: 338-343.

DOI: 10.1016/j.matdes.2012.04.049

Google Scholar

[19] Y. Shon, S.S. Joshi, S. Katakam, et al., Laser additive synthesis of high entropy alloy coating on aluminum: Corrosion behavior, Mater. Lett. 142 (2015) 122-125.

DOI: 10.1016/j.matlet.2014.11.161

Google Scholar

[20] S. Katakam, S.S. Joshi, S. Mridha, et al., Laser assisted high entropy alloy coating on aluminum: Microstructural evolution, J. Appl. Phys. 116 (2014) 104906.

DOI: 10.1063/1.4895137

Google Scholar

[21] T.M. Yue, H. Xie, X. Lin, et al., Solidification behaviour in laser cladding of AlCoCrCuFeNi high-entropy alloy on magnesium substrates, J. Alloys Compd. 587 (2014) 588-593.

DOI: 10.1016/j.jallcom.2013.10.254

Google Scholar

[22] Z.B. Cai, G. Jin, X.F. Cui, et al., Experimental and simulated data about microstructure of a NiCrCoTiV high-entropy alloy prepared by vacuum hot-pressing sintering, Vacuum 124 (2016) 5-10.

DOI: 10.1016/j.vacuum.2015.11.007

Google Scholar

[23] R. Filip, J. Sieniawski, E. Pleszakov, Formation of surface layers on Ti–6Al–4V titanium alloy by laser alloying, Surf. Eng. 22(1) (2006) 53-57.

DOI: 10.1179/174329406x84967

Google Scholar