[1]
J.W. Yeh, S.K. Chen, S. j. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater., 6 (2004) 299-303.
DOI: 10.1002/adem.200300567
Google Scholar
[2]
B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng., A, 375 (2004) 213-218.
DOI: 10.1016/j.msea.2003.10.257
Google Scholar
[3]
W. Ji, W. Wang, H. Wang, J. Zhang, Y. Wang, F. Zhang, Z. Fu, Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering, Intermetallics, 56 (2015) 24-27.
DOI: 10.1016/j.intermet.2014.08.008
Google Scholar
[4]
H.M. Daoud, A.M. Manzoni, R. Völkl, N. Wanderka, U. Glatzel, Oxidation Behavior of Al8Co17Cr17Cu8Fe17Ni33, Al23Co15Cr23Cu8Fe15Ni15, and Al17Co17Cr17Cu17Fe17Ni17 Compositionally Complex Alloys (High-Entropy Alloys) at Elevated Temperatures in Air, Adv. Eng. Mater., 17 (2015).
DOI: 10.1007/s11837-013-0756-3
Google Scholar
[5]
A. Manzoni, H. Daoud, R. Volkl, U. Glatzel, N. Wanderka, Phase separation in equiatomic AlCoCrFeNi high-entropy alloy, Ultramicroscopy, 132 (2013) 212-215.
DOI: 10.1016/j.ultramic.2012.12.015
Google Scholar
[6]
Z. Han, X. Liu, S. Zhao, Y. Shao, J. Li, K. Yao, Microstructure, phase stability and mechanical properties of Nb–Ni–Ti–Co–Zr and Nb–Ni–Ti–Co–Zr–Hf high entropy alloys, Prog. Nat. Sci., 25 (2015) 365-369.
DOI: 10.1016/j.pnsc.2015.09.001
Google Scholar
[7]
C. Jiang, B.P. Uberuaga, Efficient Ab initio Modeling of Random Multicomponent Alloys, Phys. Rev. Lett., 116 (2016) 105501(1-5).
DOI: 10.1103/physrevlett.116.105501
Google Scholar
[8]
F.Y. Tian, L.K. Varga, N.X. Chen, L. Delczeg, L. Vitos, Ab initio investigation of high-entropy alloys of 3delements, Phys. Rev. B, 87 (2013) 075144(1-8).
DOI: 10.1103/physrevb.87.075144
Google Scholar
[9]
J.M. Sanchez, F. Ducastelle, D. Gratias, Generalized cluster description of multicomponent systems, Physica A, 128 (1984) 334-350.
DOI: 10.1016/0378-4371(84)90096-7
Google Scholar
[10]
C. Niu, A.J. Zaddach, A.A. Oni, X. Sang, J.W. Hurt, J.M. LeBeau, C.C. Koch, D.L. Irving, Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo, Appl. Phys. Lett., 106 (2015) 161906(1-4).
DOI: 10.1063/1.4918996
Google Scholar
[11]
A.J. Zaddach, C. Niu, C.C. Koch, D.L. Irving, Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy, Jom, 65 (2013) 1780-1789.
DOI: 10.1007/s11837-013-0771-4
Google Scholar
[12]
Y. Zhang, T. Zuo, Y. Cheng, P.K. Liaw, High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability, Sci. Rep., 3 (2013) 1135-1138.
DOI: 10.1038/srep01455
Google Scholar
[13]
C. Li, Y. Xue, M. Hua, T. Cao, L. Ma, L. Wang, Microstructure and mechanical properties of AlxSi0. 2CrFeCoNiCu1−x high-entropy alloys, Mater. Des., 90 (2016) 601-609.
DOI: 10.1016/j.matdes.2015.11.013
Google Scholar
[14]
S. -T. Chen, W. -Y. Tang, Y. -F. Kuo, S. -Y. Chen, C. -H. Tsau, T. -T. Shun, J. -W. Yeh, Microstructure and properties of age-hardenable AlxCrFe1. 5MnNi0. 5 alloys, Mater. Sci. Eng., A, 527 (2010) 5818-5825.
DOI: 10.1016/j.msea.2010.05.052
Google Scholar
[15]
W. -Y. Tang, M. -H. Chuang, S. -J. Lin, J. -W. Yeh, Microstructures and Mechanical Performance of Plasma-Nitrided Al0. 3CrFe1. 5MnNi0. 5 High-Entropy Alloys, Metall. Mater. Trans. A, 43 (2012) 2390-2400.
DOI: 10.1007/s11661-012-1108-6
Google Scholar
[16]
I.V. Karlin, A.N. Gorban, S. Succi, V. Boffi, Maximum Entropy Principle for Lattice Kinetic Equations, Phys. Rev. Lett., 81 (1998) 6-9.
DOI: 10.1103/physrevlett.81.6
Google Scholar
[17]
S.Q. Wang, Atomic Structure Modeling of Multi-Principal-Element Alloys by the Principle of Maximum Entropy, Entropy, 15 (2013) 5536-5548.
DOI: 10.3390/e15125536
Google Scholar
[18]
S. Sankaran, N. Zabaras, A maximum entropy approach for property prediction of random microstructures, Acta Mater., 54 (2006) 2265-2276.
DOI: 10.1016/j.actamat.2006.01.015
Google Scholar
[19]
A.E. Carlsson, P.A. Fedders, Maximum-entropy method for electronic properties of alloys, Phys. Rev. B, 34 (1986) 3567-3571.
DOI: 10.1103/physrevb.34.3567
Google Scholar
[20]
Y. Yonamoto, Application of Maximum Entropy Method to Semiconductor Engineering, Entropy, 15 (2013) 1663-1689.
DOI: 10.3390/e15051663
Google Scholar
[21]
C.L. Lu, S.Y. Lu, J.W. Yeh, W.K. Hsu, Thermal expansion and enhanced heat transfer in high-entropy alloys, J. Appl. Crystallogr., 46 (2013) 736-739.
DOI: 10.1107/s0021889813005785
Google Scholar
[22]
S.Q. Wang, Paracrystalline property of high-entropy alloys, AIP Advances, 3 (2013) 102105.
Google Scholar
[23]
A. Tamm, A. Aabloo, M. Klintenberg, M. Stocks, A. Caro, Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys, Acta Mater., 99 (2015) 307-312.
DOI: 10.1016/j.actamat.2015.08.015
Google Scholar
[24]
J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, J. Hutter, Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach, Comput. Phys. Commun., 167 (2005) 103-128.
DOI: 10.1016/j.cpc.2004.12.014
Google Scholar
[25]
S. Goedecker, M. Teter, J. Hutter, Separable dual-space Gaussian pseudopotentials, Physics, 54 (1995) 1073-1710.
DOI: 10.1103/physrevb.54.1703
Google Scholar
[26]
Y. Zhang, S.G. Ma, J.W. Qiao, Morphology Transition from Dendrites to Equiaxed Grains for AlCoCrFeNi High-Entropy Alloys by Copper Mold Casting and Bridgman Solidification, Metall. Mater. Trans. A, 43 (2011) 2625-2630.
DOI: 10.1007/s11661-011-0981-8
Google Scholar
[27]
I. Kunce, M. Polanski, K. Karczewski, T. Plocinski, K.J. Kurzydlowski, Microstructural characterisation of high-entropy alloy AlCoCrFeNi fabricated by laser engineered net shaping, J. Alloys Compd., 648 (2015) 751-758.
DOI: 10.1016/j.jallcom.2015.05.144
Google Scholar
[28]
Y. -F. Kao, T. -J. Chen, S. -K. Chen, J. -W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys, J. Alloys Compd., 488 (2009) 57-64.
DOI: 10.1016/j.jallcom.2009.08.090
Google Scholar
[29]
Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, High-entropy alloy: challenges and prospects, Mater. Today, 146 (2015) 949-950.
Google Scholar
[30]
G.A. Salishchev, M.A. Tikhonovsky, D.G. Shaysultanov, N.D. Stepanov, A.V. Kuznetsov, I.V. Kolodiy, A.S. Tortika, O.N. Senkov, Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system, J. Alloys Compd., 591 (2014).
DOI: 10.1016/j.jallcom.2013.12.210
Google Scholar
[31]
J.W. Yeh, S.K. Chen, J.Y. Gan, S.J. Lin, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements, Metall. Mater. Trans. A, 35 (2004) 2533-2536.
DOI: 10.1007/s11661-006-0234-4
Google Scholar
[32]
O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics, 19 (2011) 698-706.
DOI: 10.1016/j.intermet.2011.01.004
Google Scholar
[33]
X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys., 132 (2012) 233-238.
DOI: 10.1016/j.matchemphys.2011.11.021
Google Scholar
[34]
T. -C. I., P.E.J. Rivera-Díaz-del-Castillo, A criterion for the formation of high entropy alloys based on lattice distortion, Intermetallics, 71 (2016) 76-87.
DOI: 10.1016/j.intermet.2015.12.011
Google Scholar
[35]
J. Pi, Y. Pan, Thermodynamic Analysis for Microstructure of High-Entropy Alloys, Rare Metal Mat. Eng., 42 (2013) 232-237.
DOI: 10.1016/s1875-5372(13)60037-5
Google Scholar
[36]
C. Niu, A.J. Zaddach, C.C. Koch, D.L. Irving, First principles exploration of near-equiatomic NiFeCrCo high entropy alloys, J. Alloys Compd., 672 (2016) 510-520.
DOI: 10.1016/j.jallcom.2016.02.108
Google Scholar
[37]
A. Takeuchi, A. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element, Mater. Trans., 46 (2005) 2817-2829.
DOI: 10.2320/matertrans.46.2817
Google Scholar
[38]
M.C. Gao, J.W. Yeh, P.K. Liaw, Y. Zhang, High Entropy Alloys: Fundamentals and Applications, Springer, 2016, pp.414-416.
Google Scholar
[39]
W.H. Liu, Y. Wu, J.Y. He, Y. Zhang, C.T. Liu, Z.P. Lu, The Phase Competition and Stability of High-Entropy Alloys, Jom, 66 (2014) 1973-(1983).
DOI: 10.1007/s11837-014-1119-4
Google Scholar
[40]
W. -R. Wang, W. -L. Wang, S. -C. Wang, Y. -C. Tsai, C. -H. Lai, J. -W. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys, Intermetallics, 26 (2012) 44-51.
DOI: 10.1016/j.intermet.2012.03.005
Google Scholar
[41]
T. Yang, S. Xia, S. Liu, C. Wang, S. Liu, Y. Zhang, J. Xue, S. Yan, Y. Wang, Effects of Al addition on microstructure and mechanical properties of AlxCoCrFeNi High-entropy alloy, Mater. Sci. Eng., A, 648 (2015) 15-22.
DOI: 10.1016/j.msea.2015.09.034
Google Scholar
[42]
K. Lejaeghere, V.V. Speybroeck, G.V. Oost, S. Cottenier, Error Estimates for Solid-State Density-Functional Theory Predictions: An Overview by Means of the Ground-State Elemental Crystals, Crit. Rev. Solid State Mater. Sci., 39 (2012) 1-24.
DOI: 10.1080/10408436.2013.772503
Google Scholar
[43]
L. Vitos, Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications, Springer, 2012, pp.129-130.
Google Scholar