Periodic Maximum Entropy Random Structure Models for High-Entropy Alloys

Article Preview

Abstract:

Periodic chemically homogenized high-entropy alloy structures are constructed according to maximum entropy principle. The method can efficiently generate equimolar and non-equimolar high-entropy alloy atomic structures. Nine high-entropy alloys are simulated based on the constructed models using density functional theory techniques. The calculated lattice parameters are consistent with the available experimental data. The calculated enthalpies of mixing are more negative than the values estimated by using Miedema model, due to severe lattice distortion. The lattice distortion parameters were calculated. The results showed that fcc structure tend to stable with smaller and bcc structure with larger. The bulk modulus of Al1.5CoCrNiFe high-entropy alloys was fitted and the value is consistent with the available experimental data.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

611-621

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.W. Yeh, S.K. Chen, S. j. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater., 6 (2004) 299-303.

DOI: 10.1002/adem.200300567

Google Scholar

[2] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng., A, 375 (2004) 213-218.

DOI: 10.1016/j.msea.2003.10.257

Google Scholar

[3] W. Ji, W. Wang, H. Wang, J. Zhang, Y. Wang, F. Zhang, Z. Fu, Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering, Intermetallics, 56 (2015) 24-27.

DOI: 10.1016/j.intermet.2014.08.008

Google Scholar

[4] H.M. Daoud, A.M. Manzoni, R. Völkl, N. Wanderka, U. Glatzel, Oxidation Behavior of Al8Co17Cr17Cu8Fe17Ni33, Al23Co15Cr23Cu8Fe15Ni15, and Al17Co17Cr17Cu17Fe17Ni17 Compositionally Complex Alloys (High-Entropy Alloys) at Elevated Temperatures in Air, Adv. Eng. Mater., 17 (2015).

DOI: 10.1007/s11837-013-0756-3

Google Scholar

[5] A. Manzoni, H. Daoud, R. Volkl, U. Glatzel, N. Wanderka, Phase separation in equiatomic AlCoCrFeNi high-entropy alloy, Ultramicroscopy, 132 (2013) 212-215.

DOI: 10.1016/j.ultramic.2012.12.015

Google Scholar

[6] Z. Han, X. Liu, S. Zhao, Y. Shao, J. Li, K. Yao, Microstructure, phase stability and mechanical properties of Nb–Ni–Ti–Co–Zr and Nb–Ni–Ti–Co–Zr–Hf high entropy alloys, Prog. Nat. Sci., 25 (2015) 365-369.

DOI: 10.1016/j.pnsc.2015.09.001

Google Scholar

[7] C. Jiang, B.P. Uberuaga, Efficient Ab initio Modeling of Random Multicomponent Alloys, Phys. Rev. Lett., 116 (2016) 105501(1-5).

DOI: 10.1103/physrevlett.116.105501

Google Scholar

[8] F.Y. Tian, L.K. Varga, N.X. Chen, L. Delczeg, L. Vitos, Ab initio investigation of high-entropy alloys of 3delements, Phys. Rev. B, 87 (2013) 075144(1-8).

DOI: 10.1103/physrevb.87.075144

Google Scholar

[9] J.M. Sanchez, F. Ducastelle, D. Gratias, Generalized cluster description of multicomponent systems, Physica A, 128 (1984) 334-350.

DOI: 10.1016/0378-4371(84)90096-7

Google Scholar

[10] C. Niu, A.J. Zaddach, A.A. Oni, X. Sang, J.W. Hurt, J.M. LeBeau, C.C. Koch, D.L. Irving, Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo, Appl. Phys. Lett., 106 (2015) 161906(1-4).

DOI: 10.1063/1.4918996

Google Scholar

[11] A.J. Zaddach, C. Niu, C.C. Koch, D.L. Irving, Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy, Jom, 65 (2013) 1780-1789.

DOI: 10.1007/s11837-013-0771-4

Google Scholar

[12] Y. Zhang, T. Zuo, Y. Cheng, P.K. Liaw, High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability, Sci. Rep., 3 (2013) 1135-1138.

DOI: 10.1038/srep01455

Google Scholar

[13] C. Li, Y. Xue, M. Hua, T. Cao, L. Ma, L. Wang, Microstructure and mechanical properties of AlxSi0. 2CrFeCoNiCu1−x high-entropy alloys, Mater. Des., 90 (2016) 601-609.

DOI: 10.1016/j.matdes.2015.11.013

Google Scholar

[14] S. -T. Chen, W. -Y. Tang, Y. -F. Kuo, S. -Y. Chen, C. -H. Tsau, T. -T. Shun, J. -W. Yeh, Microstructure and properties of age-hardenable AlxCrFe1. 5MnNi0. 5 alloys, Mater. Sci. Eng., A, 527 (2010) 5818-5825.

DOI: 10.1016/j.msea.2010.05.052

Google Scholar

[15] W. -Y. Tang, M. -H. Chuang, S. -J. Lin, J. -W. Yeh, Microstructures and Mechanical Performance of Plasma-Nitrided Al0. 3CrFe1. 5MnNi0. 5 High-Entropy Alloys, Metall. Mater. Trans. A, 43 (2012) 2390-2400.

DOI: 10.1007/s11661-012-1108-6

Google Scholar

[16] I.V. Karlin, A.N. Gorban, S. Succi, V. Boffi, Maximum Entropy Principle for Lattice Kinetic Equations, Phys. Rev. Lett., 81 (1998) 6-9.

DOI: 10.1103/physrevlett.81.6

Google Scholar

[17] S.Q. Wang, Atomic Structure Modeling of Multi-Principal-Element Alloys by the Principle of Maximum Entropy, Entropy, 15 (2013) 5536-5548.

DOI: 10.3390/e15125536

Google Scholar

[18] S. Sankaran, N. Zabaras, A maximum entropy approach for property prediction of random microstructures, Acta Mater., 54 (2006) 2265-2276.

DOI: 10.1016/j.actamat.2006.01.015

Google Scholar

[19] A.E. Carlsson, P.A. Fedders, Maximum-entropy method for electronic properties of alloys, Phys. Rev. B, 34 (1986) 3567-3571.

DOI: 10.1103/physrevb.34.3567

Google Scholar

[20] Y. Yonamoto, Application of Maximum Entropy Method to Semiconductor Engineering, Entropy, 15 (2013) 1663-1689.

DOI: 10.3390/e15051663

Google Scholar

[21] C.L. Lu, S.Y. Lu, J.W. Yeh, W.K. Hsu, Thermal expansion and enhanced heat transfer in high-entropy alloys, J. Appl. Crystallogr., 46 (2013) 736-739.

DOI: 10.1107/s0021889813005785

Google Scholar

[22] S.Q. Wang, Paracrystalline property of high-entropy alloys, AIP Advances, 3 (2013) 102105.

Google Scholar

[23] A. Tamm, A. Aabloo, M. Klintenberg, M. Stocks, A. Caro, Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys, Acta Mater., 99 (2015) 307-312.

DOI: 10.1016/j.actamat.2015.08.015

Google Scholar

[24] J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, J. Hutter, Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach, Comput. Phys. Commun., 167 (2005) 103-128.

DOI: 10.1016/j.cpc.2004.12.014

Google Scholar

[25] S. Goedecker, M. Teter, J. Hutter, Separable dual-space Gaussian pseudopotentials, Physics, 54 (1995) 1073-1710.

DOI: 10.1103/physrevb.54.1703

Google Scholar

[26] Y. Zhang, S.G. Ma, J.W. Qiao, Morphology Transition from Dendrites to Equiaxed Grains for AlCoCrFeNi High-Entropy Alloys by Copper Mold Casting and Bridgman Solidification, Metall. Mater. Trans. A, 43 (2011) 2625-2630.

DOI: 10.1007/s11661-011-0981-8

Google Scholar

[27] I. Kunce, M. Polanski, K. Karczewski, T. Plocinski, K.J. Kurzydlowski, Microstructural characterisation of high-entropy alloy AlCoCrFeNi fabricated by laser engineered net shaping, J. Alloys Compd., 648 (2015) 751-758.

DOI: 10.1016/j.jallcom.2015.05.144

Google Scholar

[28] Y. -F. Kao, T. -J. Chen, S. -K. Chen, J. -W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys, J. Alloys Compd., 488 (2009) 57-64.

DOI: 10.1016/j.jallcom.2009.08.090

Google Scholar

[29] Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, High-entropy alloy: challenges and prospects, Mater. Today, 146 (2015) 949-950.

Google Scholar

[30] G.A. Salishchev, M.A. Tikhonovsky, D.G. Shaysultanov, N.D. Stepanov, A.V. Kuznetsov, I.V. Kolodiy, A.S. Tortika, O.N. Senkov, Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system, J. Alloys Compd., 591 (2014).

DOI: 10.1016/j.jallcom.2013.12.210

Google Scholar

[31] J.W. Yeh, S.K. Chen, J.Y. Gan, S.J. Lin, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements, Metall. Mater. Trans. A, 35 (2004) 2533-2536.

DOI: 10.1007/s11661-006-0234-4

Google Scholar

[32] O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics, 19 (2011) 698-706.

DOI: 10.1016/j.intermet.2011.01.004

Google Scholar

[33] X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys., 132 (2012) 233-238.

DOI: 10.1016/j.matchemphys.2011.11.021

Google Scholar

[34] T. -C. I., P.E.J. Rivera-Díaz-del-Castillo, A criterion for the formation of high entropy alloys based on lattice distortion, Intermetallics, 71 (2016) 76-87.

DOI: 10.1016/j.intermet.2015.12.011

Google Scholar

[35] J. Pi, Y. Pan, Thermodynamic Analysis for Microstructure of High-Entropy Alloys, Rare Metal Mat. Eng., 42 (2013) 232-237.

DOI: 10.1016/s1875-5372(13)60037-5

Google Scholar

[36] C. Niu, A.J. Zaddach, C.C. Koch, D.L. Irving, First principles exploration of near-equiatomic NiFeCrCo high entropy alloys, J. Alloys Compd., 672 (2016) 510-520.

DOI: 10.1016/j.jallcom.2016.02.108

Google Scholar

[37] A. Takeuchi, A. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element, Mater. Trans., 46 (2005) 2817-2829.

DOI: 10.2320/matertrans.46.2817

Google Scholar

[38] M.C. Gao, J.W. Yeh, P.K. Liaw, Y. Zhang, High Entropy Alloys: Fundamentals and Applications, Springer, 2016, pp.414-416.

Google Scholar

[39] W.H. Liu, Y. Wu, J.Y. He, Y. Zhang, C.T. Liu, Z.P. Lu, The Phase Competition and Stability of High-Entropy Alloys, Jom, 66 (2014) 1973-(1983).

DOI: 10.1007/s11837-014-1119-4

Google Scholar

[40] W. -R. Wang, W. -L. Wang, S. -C. Wang, Y. -C. Tsai, C. -H. Lai, J. -W. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys, Intermetallics, 26 (2012) 44-51.

DOI: 10.1016/j.intermet.2012.03.005

Google Scholar

[41] T. Yang, S. Xia, S. Liu, C. Wang, S. Liu, Y. Zhang, J. Xue, S. Yan, Y. Wang, Effects of Al addition on microstructure and mechanical properties of AlxCoCrFeNi High-entropy alloy, Mater. Sci. Eng., A, 648 (2015) 15-22.

DOI: 10.1016/j.msea.2015.09.034

Google Scholar

[42] K. Lejaeghere, V.V. Speybroeck, G.V. Oost, S. Cottenier, Error Estimates for Solid-State Density-Functional Theory Predictions: An Overview by Means of the Ground-State Elemental Crystals, Crit. Rev. Solid State Mater. Sci., 39 (2012) 1-24.

DOI: 10.1080/10408436.2013.772503

Google Scholar

[43] L. Vitos, Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications, Springer, 2012, pp.129-130.

Google Scholar