Diffusion of Ce-Al Melts Measured by Sliding Cell Technique

Article Preview

Abstract:

The diffusion behavior of Ce-Al alloy melt at three temperatures of 943K, 953K and 963K was investigated by sliding shear method. The inter-diffusion constants D show Arrhenius-type temperature dependence in the investigated regimes. Compared with the previous results achieved in Ce-Cu melt, liquid Ce-Al displays a much slower diffusion behavior and rather higher activation energy ED, which was caused by the strong interaction between Ce and Al.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

679-683

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Uhida M., Watanabe Y., Matsumoto S., Kane M., Fukazawa T., Masaki T., et al. X-ray observation of shear cell experiments for impurity diffusion of Au in liquid Ag [J]. Journal of non-crystalline solids, 2002, 312: 203-207.

DOI: 10.1016/s0022-3093(02)01697-6

Google Scholar

[2] Masaki T., Fukazawa T., Watanabe Y., Kaneko M., Yoda S., Itami T. Measurement of diffusion coefficients of Au in liquid Ag with the shear cell technique [J]. Journal of Non-Crystalline Solids, 2007, 353(32): 3290-3294.

DOI: 10.1016/j.jnoncrysol.2007.05.073

Google Scholar

[3] Das S.K., Horbach J., Koza M.M., Chatoth S.M., Meyer A. Influence of chemical short-range order on atomic diffusion in Al–Ni melts [J]. Applied Physics Letters, 2004, 86(1): 011918.

DOI: 10.1063/1.1845590

Google Scholar

[4] Zhang B., Griesche A., Meyer A. Diffusion in Al-Cu melts studied by time-resolved X-ray radiography [J]. Physical review letters, 2010, 104(3): 035902.

DOI: 10.1103/physrevlett.104.035902

Google Scholar

[5] Cahoon J R. A modified Hole, theory for solute impurity diffusion in liquid metals[J]. Metallurgical and Materials Transactions A, 1997, 28(3): 583-593.

DOI: 10.1007/s11661-997-0044-3

Google Scholar

[6] Maser K. Darken's equation and other diffusion relations in the light of atomistic kinetic concepts[J]. Journal of Solid State Electrochemistry, 1999, 4(1): 3-16.

DOI: 10.1007/s100080050186

Google Scholar

[7] Khandros I Y, Ohring M. A new experimental technique for studying mass transport in liquid metals[J]. Journal of materials science, 1989, 24(1): 252-258.

DOI: 10.1007/bf00660963

Google Scholar

[8] Zhao D Q, Wang W H, Zhuang Y X, et al. Measurement of diffusivity in molten films by a masking film method[J]. physica status solidi (a), 1999, 174(2): 337-342.

DOI: 10.1002/(sici)1521-396x(199908)174:2<337::aid-pssa337>3.0.co;2-f

Google Scholar

[9] Roşu-Pflumm R, Wendl W, Müller-Vogt G, et al. Diffusion measurements using the shear cell technique: Investigation of the role of Marangoni convection by pre-flight experiments on the ground and during the Foton M2 mission[J]. International Journal of Heat and Mass Transfer, 2009, 52(25): 6042-6049.

DOI: 10.1016/j.ijheatmasstransfer.2009.06.001

Google Scholar

[10] Mathiak G, Griesche A, Kraatz K H, et al. Diffusion in liquid metals[J]. Journal of non-crystalline solids, 1996, 205: 412-416.

DOI: 10.1016/s0022-3093(96)00253-0

Google Scholar

[11] Geng Y, Zhu C, Zhang B. A sliding cell technique for diffusion measurements in liquid metals[J]. AIP Advances, 2014, 4(3): 037102.

DOI: 10.1063/1.4868382

Google Scholar

[12] Cussler E L. Diffusion: mass transfer in fluid systems[M]. Cambridge university press, (2009).

Google Scholar

[13] Griesche A, Zhang B, Solórzano E, et al. Note: X-ray radiography for measuring chemical diffusion in metallic melts[J]. Review of Scientific Instruments, 2010, 81(5): 056104.

DOI: 10.1063/1.3427256

Google Scholar

[14] Suzuki S, Kraatz K H, Frohberg G. The effect of shear convection on diffusion measurements in liquid metals using the foton shear cell[J]. Microgravity-Science and Technology, 2006, 18(3-4): 155-159.

DOI: 10.1007/bf02870400

Google Scholar

[15] Wan B, Hu J L, Zhong L X, et al. The self-diffusion and inter-diffusion in liquid Ce80Cu20 (in Chinese). Sci Sin-Phys Mech Astron, 2015, 45: 056101.

DOI: 10.1360/sspma2015-00001

Google Scholar

[16] Geng Y L, Zhu C A, Hu J L, et al. A new sliding cell technique for diffusion coefficient measurements in liquid Al-Cu alloys[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2014, 7: 009.

Google Scholar

[17] Holland-Moritz D, Stüber S, Hartmann H, et al. Ni self-diffusion in Zr-Ni (-Al) melts[C]/Journal of Physics: Conference Series. IOP Publishing, 2009, 144(1): 012119.

DOI: 10.1088/1742-6596/144/1/012119

Google Scholar

[18] Zhang B, Griesche A, Meyer A. Relation between self diffusion and interdiffusion in Al-Cu melts[J]. (2009).

Google Scholar

[19] Griesche A, Garcia-Moreno F, Macht M P, et al. Chemical diffusion experiments in AlNiCe-melts[C]/Materials Science Forum. Trans Tech Publications, 2006, 508: 567-572.

DOI: 10.4028/www.scientific.net/msf.508.567

Google Scholar

[20] Griesche A, Macht M P, Garandet J P, et al. Diffusion and viscosity in molten Pd 40 Ni 40 P 20 and Pd 40 Cu 30 Ni 10 P 20 alloys[J]. Journal of non-crystalline solids, 2004, 336(3): 173-178.

DOI: 10.1016/j.jnoncrysol.2004.01.011

Google Scholar

[21] Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Materials Transactions, 2005, 46(12): 2817-2829.

DOI: 10.2320/matertrans.46.2817

Google Scholar