Progress on Preparation, Microstructure and Property of Graphene Reinforced Aluminum Matrix Composite

Article Preview

Abstract:

Graphene with unique two-dimensional structure and excellent mechanical properties, is one of the most ideal reinforcements. With the increasing progress of aluminum matrix composites, graphene reinforced aluminum matrix composites have attracted great interests. This paper mainly reviews the latest progress on preparation of graphene reinforced aluminum matrix composites, and especially discusses the effective dispersion technique of graphene. Meanwhile, the microstructure and interfacial structure of graphene reinforced aluminum matrix composites are also emphasized and discussed. The results showed that graphene can significantly improve the mechanical properties of composites and refine the matrix grain. By controlling preparation parameters, the graphene agglomeration can be effectively solved, and the adverse interface reaction between graphene and substrate can be avoided. Finally, the current challenges and solutions of graphene reinforced aluminum matrix composites were presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

917-932

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] NOVOSELOV K S, UEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films [J]. Science 2004; 306(5696): 666.

DOI: 10.1126/science.1102896

Google Scholar

[2] Chae H K, Siberio-Perez D Y, Kim J. A route to high surface area, porosity and inclusion of large molecules in crystals [J]. Nature 2004; 427(6974): 523.

DOI: 10.1038/nature02311

Google Scholar

[3] Lee C G, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science 2008; 321(5887): 385.

DOI: 10.1126/science.1157996

Google Scholar

[4] Yalandin A A, Uhosh S, Bao W Z, et al. Superior thermal conductivity of single-layer graphene [J]. Nano. Lett. 2008; 8(3): 902.

Google Scholar

[5] KUANU Da, HU Wenbin. Research progress of graphene composites [J]. J INORG MATER 2013; 28(3): 235.

Google Scholar

[6] ZHOU Junwen, MA Wenshi. Research progress on preparation of graphene and its nanocomposites [J]. New. Chem. Mater. 2010; 38(3): 26.

Google Scholar

[7] ZHU Y, MURALI S, CAI W, et al. Graphene and graphene oxide: synthesis, properties, and applications [J]. Adv. Mater. 2010; 22(35): 3906.

DOI: 10.1002/adma.201001068

Google Scholar

[8] RAO C N, SOOD A K, et al. Graphene: the new two-dimensional Nanomaterial [J]. Angew. Chem. Int. Ed. Engl. 2009; 48(42): 7752.

DOI: 10.1002/anie.200901678

Google Scholar

[9] WALKER L S, MAROTTO V R, RAFIEE M A, et al. Toughening in graphene ceramic composites [J]. ACS. NANO. 2011; 5(4): 3182.

DOI: 10.1021/nn200319d

Google Scholar

[10] Meyer C J, Geim A K, Novoselov K S, et al. The structure of suspended graphene sheets [J]. Nature 2007; 446: 60.

Google Scholar

[11] Berger C, Song Z M, Li X B, et al. Electronicconfinement and coherence in patterned epitaxial graphene [J]. Science 2006; 312(5777): 1191.

Google Scholar

[12] Li D, Muller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets [J]. NAT. NANOTECHNOL. 2008; 3: 101.

Google Scholar

[13] Li X S, Cai W W, An J H, et al. Large-Area synthesis of high-quality and uniform graphene films on copper foils [J]. Science 2009; 324(5932): 1312.

DOI: 10.1126/science.1171245

Google Scholar

[14] Hummers W S, Offeman R E. Preparation of Graphitic Oxide [J]. J. Am. Chem. Soc. 1958; 80: 1339.

DOI: 10.1021/ja01539a017

Google Scholar

[15] Staudenmaier L. Verfahren zur Darstellung der Graphitsure [J]. Ber. Dtsch. Chem. Ges 1898; 31: 1481.

DOI: 10.1002/cber.18980310237

Google Scholar

[16] He H Y, Klinowski J, Forster M, et al. A new structural model for graphite oxide [J]. CHEM. PHYS. LETT. 1998; 287(1/2): 53.

Google Scholar

[17] Lerf A, He H Y, Forster M, et al. Structure of graphite oxide revisited [J]. J. PHYS. CHEM. B 1998; 102(23): 4477.

DOI: 10.1021/jp9731821

Google Scholar

[18] Ling Z C, Yan C X, Shi Q N, Feng Z X. Research progress on the preparation method of graphene reinforced metal matrix composite [J]. Mater. Rev. 2015; 07, 143.

Google Scholar

[19] Zhang D D, Zhan Z J. Research progress in mechanical of graphene/metal matrix composite [J]. Mater. Eng. 2016; 05, 112.

Google Scholar

[20] CHU K, JIA C. Enhanced strength bulk graphene-copper composites [J]. Physica. Status. Solidi. A 2014; 211(1): 184.

DOI: 10.1002/pssa.201330051

Google Scholar

[21] PEREZ BUSTAMANTE R, BOLANOS MORALES D, BON ILLA-MARTINEZ J, et al. Microstructural and hardness behavior of grapheme-nanoplatelets/aluminum composites synthesized by mechanical alloying [J]. J. Alloys. Compd. 2014; 615(Suppl1): 578.

DOI: 10.1016/j.jallcom.2014.01.225

Google Scholar

[22] ZHAI W, SHI X, XU Z, et al. Formation of Iriction layer oI Ni3Al matrix composites with micro-and nano-structure during sliding friction under different loads [J]. MATER. CHEM. PHYS. 2014; 147(3): 850.

DOI: 10.1016/j.matchemphys.2014.06.030

Google Scholar

[23] ZHAI W, SHI X, WAND M, et al. Grain refinement: a mechanism for graphene nano-platelets to reduce fraction and wear of Ni3Al matrix self-lubricating composites [J]. Wear 2014; 310(1-2): 33.

DOI: 10.1016/j.wear.2013.12.014

Google Scholar

[24] XU Z S, SHI X I, ZHAI W Z, et al. Preparation and tribological properties of TiAI matrix composites reinforced by multilayer graphene [J]. Carbon 2014; 67: 168.

DOI: 10.1016/j.carbon.2013.09.077

Google Scholar

[25] SHIN S E, CHOI H J, SHIN J H, et al. Strengthening behavior of few-layered graphene aluminum composites [J]. Carbon 2015; 82: 143.

DOI: 10.1016/j.carbon.2014.10.044

Google Scholar

[26] KIM W J, LEE T J, HAN S H. Mult-layer graphene/copper composites: preparation using high-ratio differential speed rolling microstructure and mechanical properties [J]. Carbon 2014; 69: 55.

DOI: 10.1016/j.carbon.2013.11.058

Google Scholar

[27] Zhou J Y. Research on the preparation and property of graphene/pure aluminium composite [D]. Harbin: Harbin Institute of Technology, (2015).

Google Scholar

[28] FAN X, PENU W, LI Y, et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation [J]. Adv. Mater. 2008; 20(23): 4490.

DOI: 10.1002/adma.200801306

Google Scholar

[29] STANKOVIC H S, DIKIN D A, DOMMETT U H, et al. Graphene-based composite Materials [J]. Nature 2006; 442(7100): 282.

Google Scholar

[30] SCHNIEPP H C, LI J L, MCALLISTER M J, et al. Functionalized single graphene sheets derived from splitting graphite oxide [J]. J. Phys. Chem. B 2006; 110(17): 8535.

DOI: 10.1021/jp060936f

Google Scholar

[31] Qi T J, Yu Z M, Xu Z P, et al. Research on the preparation and mechanical properties of graphene reinforced aluminum matrix composite [D]. Journal of Harbin university of science and technology 2015; 03: 61.

Google Scholar

[32] TANG Y, YANg X, WANG R, et al. Enhancement of the mechanical properties of graphene -copper composites with graphene-nickel hybrids [J]. Mater. Sci. Eng. A 2014; 599: 247.

DOI: 10.1016/j.msea.2014.01.061

Google Scholar

[33] Li D S, Wu W Z, Zhou X L, et al. The microstructure and mechanical properties of graphene /Al composite [J]. Trans. Nonferrous Met. Soc. 2015; 06: 1498.

Google Scholar

[34] Li J L, Xiong Y C, Wang X D, et al. Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling [J]. Mater. Sci. Eng. A 2015; 626: 400.

DOI: 10.1016/j.msea.2014.12.102

Google Scholar

[35] Zhao L Y, Lu H M, Gao Z J Microstructure and mechanical properties of Al/graphene composite produced by high-pressure torsion [J]. ADV. ENG. MATER. 2015; 17(7): 976.

DOI: 10.1002/adem.201400375

Google Scholar

[36] Gao X. Research on preparation and mechanical properties of graphene reinforced aluminum matrix composite [D]. Harbin: Harbin university of science and technology, (2015).

Google Scholar

[37] Wang J Y, Li G Q, Fan G L, et al. Reinforcement nanosheets in aluminum matrix composites [J]. Scripta. Materialia. 2012; 66(8): 594.

DOI: 10.1016/j.scriptamat.2012.01.012

Google Scholar

[38] Yan S J, Zhang X Y, Yang C, et al. Investigating aluminum alloy reinforced by graphene nano-flakes [J]. Mater. Sci. Eng. A 2014; 612: 440.

Google Scholar

[39] Bastwros M, Kim Y G, Zhu C, et al. Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering [J]. Composites Part B 2014; 60: 111.

DOI: 10.1016/j.compositesb.2013.12.043

Google Scholar

[40] Rashad M, Pan F S, Tang A, et al. Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method [J]. Prog. Nat. Sci 2014; 24(2): 101.

DOI: 10.1016/j.pnsc.2014.03.012

Google Scholar

[41] Guan R G, Lian C, Zhao Z Y, Chao R Z, Liu C M. The preparation and property of graphene reinforced aluminium matrix composite [J]. Rare Metal Mat. Eng. 2012; S2: 607.

Google Scholar

[42] Yan S J, Yang C, Hong Q H, Chen J Z, et al. Research on graphene reinforced aluminum matrix nanocomposite [J]. Mat. Eng. 2014; 04: 1.

Google Scholar

[43] Bartolucci S F, Paras J, Rafiee M A, et al. Graphene aluminum nanocomposites [J]. Mater. Sci. Eng. A 2011; 528(27): 7933-7937.

DOI: 10.1016/j.msea.2011.07.043

Google Scholar

[44] SHIN S E, CHOI H J, SHIN J H, et al. Strengthening behavior of few-layered graphene/ aluminum composites [J]. Carbon 2015; 82: 143-151.

DOI: 10.1016/j.carbon.2014.10.044

Google Scholar

[45] LI Z, FAN G L, TAN Z Q, et al. Uniform dispersion of graphene oxide in aluminum powder by direct electrostatic adsorption for fabrication of graphene/aluminum composites [J]. Nano Technol 2014; 25 (325601): 1-6.

DOI: 10.1088/0957-4484/25/32/325601

Google Scholar