[1]
NOVOSELOV K S, UEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films [J]. Science 2004; 306(5696): 666.
DOI: 10.1126/science.1102896
Google Scholar
[2]
Chae H K, Siberio-Perez D Y, Kim J. A route to high surface area, porosity and inclusion of large molecules in crystals [J]. Nature 2004; 427(6974): 523.
DOI: 10.1038/nature02311
Google Scholar
[3]
Lee C G, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science 2008; 321(5887): 385.
DOI: 10.1126/science.1157996
Google Scholar
[4]
Yalandin A A, Uhosh S, Bao W Z, et al. Superior thermal conductivity of single-layer graphene [J]. Nano. Lett. 2008; 8(3): 902.
Google Scholar
[5]
KUANU Da, HU Wenbin. Research progress of graphene composites [J]. J INORG MATER 2013; 28(3): 235.
Google Scholar
[6]
ZHOU Junwen, MA Wenshi. Research progress on preparation of graphene and its nanocomposites [J]. New. Chem. Mater. 2010; 38(3): 26.
Google Scholar
[7]
ZHU Y, MURALI S, CAI W, et al. Graphene and graphene oxide: synthesis, properties, and applications [J]. Adv. Mater. 2010; 22(35): 3906.
DOI: 10.1002/adma.201001068
Google Scholar
[8]
RAO C N, SOOD A K, et al. Graphene: the new two-dimensional Nanomaterial [J]. Angew. Chem. Int. Ed. Engl. 2009; 48(42): 7752.
DOI: 10.1002/anie.200901678
Google Scholar
[9]
WALKER L S, MAROTTO V R, RAFIEE M A, et al. Toughening in graphene ceramic composites [J]. ACS. NANO. 2011; 5(4): 3182.
DOI: 10.1021/nn200319d
Google Scholar
[10]
Meyer C J, Geim A K, Novoselov K S, et al. The structure of suspended graphene sheets [J]. Nature 2007; 446: 60.
Google Scholar
[11]
Berger C, Song Z M, Li X B, et al. Electronicconfinement and coherence in patterned epitaxial graphene [J]. Science 2006; 312(5777): 1191.
Google Scholar
[12]
Li D, Muller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets [J]. NAT. NANOTECHNOL. 2008; 3: 101.
Google Scholar
[13]
Li X S, Cai W W, An J H, et al. Large-Area synthesis of high-quality and uniform graphene films on copper foils [J]. Science 2009; 324(5932): 1312.
DOI: 10.1126/science.1171245
Google Scholar
[14]
Hummers W S, Offeman R E. Preparation of Graphitic Oxide [J]. J. Am. Chem. Soc. 1958; 80: 1339.
DOI: 10.1021/ja01539a017
Google Scholar
[15]
Staudenmaier L. Verfahren zur Darstellung der Graphitsure [J]. Ber. Dtsch. Chem. Ges 1898; 31: 1481.
DOI: 10.1002/cber.18980310237
Google Scholar
[16]
He H Y, Klinowski J, Forster M, et al. A new structural model for graphite oxide [J]. CHEM. PHYS. LETT. 1998; 287(1/2): 53.
Google Scholar
[17]
Lerf A, He H Y, Forster M, et al. Structure of graphite oxide revisited [J]. J. PHYS. CHEM. B 1998; 102(23): 4477.
DOI: 10.1021/jp9731821
Google Scholar
[18]
Ling Z C, Yan C X, Shi Q N, Feng Z X. Research progress on the preparation method of graphene reinforced metal matrix composite [J]. Mater. Rev. 2015; 07, 143.
Google Scholar
[19]
Zhang D D, Zhan Z J. Research progress in mechanical of graphene/metal matrix composite [J]. Mater. Eng. 2016; 05, 112.
Google Scholar
[20]
CHU K, JIA C. Enhanced strength bulk graphene-copper composites [J]. Physica. Status. Solidi. A 2014; 211(1): 184.
DOI: 10.1002/pssa.201330051
Google Scholar
[21]
PEREZ BUSTAMANTE R, BOLANOS MORALES D, BON ILLA-MARTINEZ J, et al. Microstructural and hardness behavior of grapheme-nanoplatelets/aluminum composites synthesized by mechanical alloying [J]. J. Alloys. Compd. 2014; 615(Suppl1): 578.
DOI: 10.1016/j.jallcom.2014.01.225
Google Scholar
[22]
ZHAI W, SHI X, XU Z, et al. Formation of Iriction layer oI Ni3Al matrix composites with micro-and nano-structure during sliding friction under different loads [J]. MATER. CHEM. PHYS. 2014; 147(3): 850.
DOI: 10.1016/j.matchemphys.2014.06.030
Google Scholar
[23]
ZHAI W, SHI X, WAND M, et al. Grain refinement: a mechanism for graphene nano-platelets to reduce fraction and wear of Ni3Al matrix self-lubricating composites [J]. Wear 2014; 310(1-2): 33.
DOI: 10.1016/j.wear.2013.12.014
Google Scholar
[24]
XU Z S, SHI X I, ZHAI W Z, et al. Preparation and tribological properties of TiAI matrix composites reinforced by multilayer graphene [J]. Carbon 2014; 67: 168.
DOI: 10.1016/j.carbon.2013.09.077
Google Scholar
[25]
SHIN S E, CHOI H J, SHIN J H, et al. Strengthening behavior of few-layered graphene aluminum composites [J]. Carbon 2015; 82: 143.
DOI: 10.1016/j.carbon.2014.10.044
Google Scholar
[26]
KIM W J, LEE T J, HAN S H. Mult-layer graphene/copper composites: preparation using high-ratio differential speed rolling microstructure and mechanical properties [J]. Carbon 2014; 69: 55.
DOI: 10.1016/j.carbon.2013.11.058
Google Scholar
[27]
Zhou J Y. Research on the preparation and property of graphene/pure aluminium composite [D]. Harbin: Harbin Institute of Technology, (2015).
Google Scholar
[28]
FAN X, PENU W, LI Y, et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation [J]. Adv. Mater. 2008; 20(23): 4490.
DOI: 10.1002/adma.200801306
Google Scholar
[29]
STANKOVIC H S, DIKIN D A, DOMMETT U H, et al. Graphene-based composite Materials [J]. Nature 2006; 442(7100): 282.
Google Scholar
[30]
SCHNIEPP H C, LI J L, MCALLISTER M J, et al. Functionalized single graphene sheets derived from splitting graphite oxide [J]. J. Phys. Chem. B 2006; 110(17): 8535.
DOI: 10.1021/jp060936f
Google Scholar
[31]
Qi T J, Yu Z M, Xu Z P, et al. Research on the preparation and mechanical properties of graphene reinforced aluminum matrix composite [D]. Journal of Harbin university of science and technology 2015; 03: 61.
Google Scholar
[32]
TANG Y, YANg X, WANG R, et al. Enhancement of the mechanical properties of graphene -copper composites with graphene-nickel hybrids [J]. Mater. Sci. Eng. A 2014; 599: 247.
DOI: 10.1016/j.msea.2014.01.061
Google Scholar
[33]
Li D S, Wu W Z, Zhou X L, et al. The microstructure and mechanical properties of graphene /Al composite [J]. Trans. Nonferrous Met. Soc. 2015; 06: 1498.
Google Scholar
[34]
Li J L, Xiong Y C, Wang X D, et al. Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling [J]. Mater. Sci. Eng. A 2015; 626: 400.
DOI: 10.1016/j.msea.2014.12.102
Google Scholar
[35]
Zhao L Y, Lu H M, Gao Z J Microstructure and mechanical properties of Al/graphene composite produced by high-pressure torsion [J]. ADV. ENG. MATER. 2015; 17(7): 976.
DOI: 10.1002/adem.201400375
Google Scholar
[36]
Gao X. Research on preparation and mechanical properties of graphene reinforced aluminum matrix composite [D]. Harbin: Harbin university of science and technology, (2015).
Google Scholar
[37]
Wang J Y, Li G Q, Fan G L, et al. Reinforcement nanosheets in aluminum matrix composites [J]. Scripta. Materialia. 2012; 66(8): 594.
DOI: 10.1016/j.scriptamat.2012.01.012
Google Scholar
[38]
Yan S J, Zhang X Y, Yang C, et al. Investigating aluminum alloy reinforced by graphene nano-flakes [J]. Mater. Sci. Eng. A 2014; 612: 440.
Google Scholar
[39]
Bastwros M, Kim Y G, Zhu C, et al. Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering [J]. Composites Part B 2014; 60: 111.
DOI: 10.1016/j.compositesb.2013.12.043
Google Scholar
[40]
Rashad M, Pan F S, Tang A, et al. Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method [J]. Prog. Nat. Sci 2014; 24(2): 101.
DOI: 10.1016/j.pnsc.2014.03.012
Google Scholar
[41]
Guan R G, Lian C, Zhao Z Y, Chao R Z, Liu C M. The preparation and property of graphene reinforced aluminium matrix composite [J]. Rare Metal Mat. Eng. 2012; S2: 607.
Google Scholar
[42]
Yan S J, Yang C, Hong Q H, Chen J Z, et al. Research on graphene reinforced aluminum matrix nanocomposite [J]. Mat. Eng. 2014; 04: 1.
Google Scholar
[43]
Bartolucci S F, Paras J, Rafiee M A, et al. Graphene aluminum nanocomposites [J]. Mater. Sci. Eng. A 2011; 528(27): 7933-7937.
DOI: 10.1016/j.msea.2011.07.043
Google Scholar
[44]
SHIN S E, CHOI H J, SHIN J H, et al. Strengthening behavior of few-layered graphene/ aluminum composites [J]. Carbon 2015; 82: 143-151.
DOI: 10.1016/j.carbon.2014.10.044
Google Scholar
[45]
LI Z, FAN G L, TAN Z Q, et al. Uniform dispersion of graphene oxide in aluminum powder by direct electrostatic adsorption for fabrication of graphene/aluminum composites [J]. Nano Technol 2014; 25 (325601): 1-6.
DOI: 10.1088/0957-4484/25/32/325601
Google Scholar