[1]
Y.G. Zhou, Y.Q. Yang. Progress in the study of titanium matrix composites reinforced by SiC fibers. Acta Metallurgica Sinica. 38 ( 2002) 461-465.
Google Scholar
[2]
Michael G. Castelli, John Gayda. An overview of elevated temperature damage mechanisms and fatigue behavior of unidirectional SCS-6/Ti-15-3 composite. NASA Technical Memorandum 106131, (1993).
DOI: 10.1016/0142-1123(94)90278-x
Google Scholar
[3]
William D. Brewer, Jalaiah Unnam. Interface control and mechanical property improvements in silicon carbide/Titanium composites, NASA Technical paper 2066, (1982).
Google Scholar
[4]
Constantin Vahlas, Ian W. Hall, etc. Investigation of interfacial reactivity in composite materials, Materials Science and Engineering A 259 (1999) 269-278.
DOI: 10.1016/s0921-5093(98)00905-8
Google Scholar
[5]
C. Banlnl, M. Ferraris, F. Marchetti, Thermal stability of interfaces in Ti-6Al-4V reinforced by SiC Sigma fibers, Journal of materials science 29 (1994) 4840-4846.
DOI: 10.1007/bf00356531
Google Scholar
[6]
S. Mukherjee, C. R. Ananth, etc. Effects of interface chemistry on the fracture properties of titanium matrix composites, Composites Part A 29A (1998) 1213-1219.
DOI: 10.1016/s1359-835x(97)00129-2
Google Scholar
[7]
S. Q. Guo, Y. Kagawa, etc. Microstructural characterization of interface in SiC fiber-reinforced Ti-15V-3Cr-3Al-3Sn matrix composite, Materials Science and Engineering A, 246 (1998) 25-35.
DOI: 10.1016/s0921-5093(97)00737-5
Google Scholar
[8]
H. Li, H. Huang, etc. Investigation of interface reaction in continuous SiC fiber reinforced titanium comoposites, Forging and stamping technology, Vol. 41, No. 4, (2016) 103-108.
Google Scholar
[9]
S. Q. Guo, Y. Kagawa, etc. Microstructural characterization of interface in SiC fiber-reinforced Ti-15V-3Cr-3Al-3Sn matrix composite, Materials Science and Engineering A246 (1998) 25-35.
DOI: 10.1016/s0921-5093(97)00737-5
Google Scholar
[10]
I. W. Hall, J.L. Lirn, etc. Interfacial reactions in titanium matrix composites, Journal of materials science letters 10 (1991) 263-366.
Google Scholar
[11]
X. H. Lu, Y. Y. Yang, etc. Influence of Alloying Element Diffusion on Fabricating Ti Matrix Composites, Rare metal materials and engineering, Vol. 37, No. 8, 2008, 1329-1335.
Google Scholar
[12]
S. M. Jeng, W. Kal, etc. Interface Reaction studies of B4C/B and SiC/B fiber-reinforced Ti3Al matrix composites, Materials Science and Engineering A, 114 (1989) 189-196.
DOI: 10.1016/0921-5093(89)90858-7
Google Scholar
[13]
R. Verma, A. K. Ghosh, etc. Measurement of interfacial shear properties of composites of Ti-1100 alloy reinforced with SCS-6 SiC monofilament fiber, Materials Science and Engineering A, 191 (1995) 151-163.
DOI: 10.1016/0921-5093(94)09622-4
Google Scholar
[14]
U Ramamurty, F C Dary, etc. A method for measuring residual strains in fiber-reinforced titanium matrix composites. Acta Mater, 1996, 44(8): 3397-3406.
DOI: 10.1016/1359-6454(95)00407-6
Google Scholar
[15]
S. Gu¨ngo¨r . Residual stress measurements in fibre reinforced titanium alloy composites. Acta Materialia 50 (2002) 2053–(2073).
DOI: 10.1016/s1359-6454(02)00050-2
Google Scholar
[16]
H. Huang, M. Wen, etc. The investigation of interface in SiC fiber reinforced TC17 titanium alloy matrix composites, Special and High performance structural materials, (2015).
DOI: 10.4028/www.scientific.net/msf.849.391
Google Scholar