Microstructure and Damping Capacity of AlNp/Mg-Al Composites with Different Particle Contents

Article Preview

Abstract:

The AlN particles reinforced magnesium-aluminum matrix composites were fabricated by powder metallurgy and the damping mechanism was discussed. The results showed that the best damping capacity of composite reached with the addition of 6wt% AlN reinforcement, while the AlN particles were uniformly dispersed in the matrix. The damping capacity of composites decreases with the increasing of the reinforcement content and the experimental frequency. The internal friction peak related to dislocation appearance in the temperature ranges of 100-150°C. In addition, another internal friction peak of composites between 200 and 250°C arose, which was related to interface sliding.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

933-943

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ahmadi A, Toroghinejad MR, Najafizadeh A. J. Mater. Des. 2014; 3: 13-9.

Google Scholar

[2] Khan SU, Li CY, Siddiqui NA, Kim JK. J. Compos. Sci. Technol. 2011; 71(12): 1486-94.

Google Scholar

[3] Wang J, Zhang Z, Yang G. The dependence of damping capacity of PMMCs onstrain amplitude[J]. Comput. Mater. Sci. 2000; 18(2): 205-11.

Google Scholar

[4] Liu Q, Li M, Gu Y, Wang S, Zhang Y, Li Q, et al. Interlocked CNT networks withhigh damping and storage modulus[J]. Carbon 2015; 86: 46-53.

DOI: 10.1016/j.carbon.2015.01.014

Google Scholar

[5] Hu J, Liu G, Tang S. Damping behavior in Al18B4O3w/Al composite containing aninterfacial layer with low melting point metal particles[J]. J. Alloys Compd. 2012; 513: 61-7.

DOI: 10.1016/j.jallcom.2011.09.073

Google Scholar

[6] Lin R, Lu C. Modeling of interfacial friction damping of carbon nanotube-based nano-composite nanocoposites [J]. Mech. Syst. Sig. Process2010; 24(8): 2996-3012.

Google Scholar

[7] Zhang J, Perez RJ, Lavernia EJ. Documentation of damping capacity of metallic, ceramic and metal-matrix composite materials[J]. Mater. Sci. 1993; 28(9): 2395-404.

DOI: 10.1007/bf01151671

Google Scholar

[8] Zhang Y, Ma N, Li X, Wang H. Study on damping capacity aluminum compositereinforced with in situ TiAl3rod [J]. Mater. Des. 2008; 29(5): 1057-9.

Google Scholar

[9] Colakoglu M. Factors effecting internal damping in aluminum[J]. Theor. Appl. Mech. 2004; 42(1): 95-105.

Google Scholar

[10] Yadollahpour M, Kadkhodapour J, Ziaei-Rad S, Karimzadeh F. An experimentaland numerical investigation on damping capacity of nanocomposite[J]. Mater. Sci. Eng. A 2009; 507(1-2): 149-54.

DOI: 10.1016/j.msea.2009.01.016

Google Scholar

[11] Zhang J, Perez RJ, Lavernia EJ. Dislocation-induced damping in metal matrixcomposites[J]. Mater. Sci. 1993; 28(3): 835-46.

Google Scholar

[12] Hu Y B, Wang J F, Pan F S, et al. Research on high damping of magnesium matrix composites[J]. Mater. Eng. 2010; 01: 89-98.

Google Scholar

[13] Zhang X Q, Wang H W, Liao L et al. In-situ synthesis method and damping characterization of magnesium matrix composites[J]. Composites Science and Technology 2007; 67(3-4): 720-727.

DOI: 10.1016/j.compscitech.2006.04.010

Google Scholar

[14] Zhang S J, Li W X, Yu K, et al. Grain refining technology of magnesium alloys [J]. Foundry2001; 50(7): 373-376.

Google Scholar

[15] Y Zhang, M H Song, Yan Li, et al. Preparation and properties of AIN particles reinforced Cu-base composites [J]. Journal of Heilongjiang University of Science & Technology 2016; 01: 48-52.

Google Scholar

[16] Huang S J, Chen Z W. Grain refinement of AlNp/AZ91D magnesium metal-matrix composites[J]. Kovove. Mater. 2011; Vol. 49(No. 4): 259-264.

DOI: 10.4149/km_2011_4_259

Google Scholar

[17] Fogagnolo J. B, Robert M. H, Torralba J. M. Mechanical alloyed AlN particle-reinforced Al-6061 matrix composites: Powder processing, consolidation and mechanical strength and hardness of the as-extruded materials [J]. Mater. Sci. Eng. A 2006; Vol. 426(No. 1-2): 85-94.

DOI: 10.1016/j.msea.2006.03.074

Google Scholar

[18] Min Yang, Chao Qun Song, Xiu Zhong Liu, et al. Microstructure and Mechanical Properties of Al/AlN Surface Composite Fabricated via Multi-Pass Friction Stir Processing[J]. Appl. Mech. Mater. 2014; 192-197.

DOI: 10.4028/www.scientific.net/amm.490-491.192

Google Scholar

[19] P T Li, Q T Hao. Research on preparation, re-melting and properties of AlN/ZL114 composite [J]. Hot Working Technology 2013; 12: 127-130.

Google Scholar

[20] Yong Qiang Wei, Tao Jiang, Ya Lin Zhu, et al. Thermal conductivity numerical simulation of Double-sized A1NParticle Reinforced Epoxy Composites [J]. China Plastics Industry 2014; 02: 75-78+84.

Google Scholar

[21] KatsarouLydia, Mounib Maher, Lefebvre, et al. Microstructure, mechanical properties and creep of magnesium alloy Elektron21 reinforced with AlN nanoparticles by ultrasound-assisted stirring[J]. Mater. Sci. Eng. A2016: 84-92.

DOI: 10.1016/j.msea.2016.02.042

Google Scholar

[22] N M Kumara, S SKumaranb, L A Kumaraswamidhasa. High temperature investigation on EDM process of Al2618 alloy reinforced with Si3N4, AlN and ZrB2 in-situ composites [J]. J. Alloys Compd. 2016: 755-768.

DOI: 10.1016/j.jallcom.2015.12.175

Google Scholar

[23] S Sankaranarayanana, M K Habibib, S Jayalakshmiac, et al. Nano-AlN particle reinforced Mg composites: microstructural and mechanical properties [J]. Mater. Sci. Technol. 2015; Vol. 31 (No. 9): 1122-1131.

Google Scholar

[24] Kui Wang, Chun Xiang Cui, Qian Wang, et al. Fabrication and characterization of in situ AlN–TiN/Al composite ribbons[J]. Rare Metals 2015; Vol. 34(No. 9): 645-649.

DOI: 10.1007/s12598-014-0252-0

Google Scholar

[25] Gajewska Marta, Dutkiewicz Jan, Morgiel Jerzy. Effect of reinforcement particle size on microstructure and mechanical properties of Al-Zn-Mg-Cu/AlNnano-composites produced using mechanical alloying [J]. J. Alloys Compd. 2014; Vol. 586(Suppl): S423-S427.

DOI: 10.1016/j.jallcom.2012.10.055

Google Scholar

[26] Sandeep Fale, Ajay Likhite, Jatin Bhatt. The Wear Behavior of In-Situ Al–AlN Metal Matrix Composites[J]. Trans. Inst. Met. 2014; Vol. 67(No. 6): 841-849.

DOI: 10.1007/s12666-014-0407-6

Google Scholar

[27] NamHye Rim, KimYoung Jin, Ahn Jung-Ho. Effects of Process Control Agent on the Synthesis of AlN-Carbon Nanotube by Ball-Milling[J]. J. NANOSCI. NANOTECHNO. 2013; No. 9, 5988-5991.

DOI: 10.1166/jnn.2013.7663

Google Scholar

[28] H.M. Fu. Grain refinement by AlN particles in Mg–Al based alloys[J].J. Alloys Compd. 2009; Vol. 478(No. 1-2): 809-812.

DOI: 10.1016/j.jallcom.2008.12.029

Google Scholar

[29] Jain Jayant, Kar Ashish M, Upadhyaya Anish. Effect of YAG addition on sintering of P/M 316L and 434L stainless steels[J]. Mater. Lett. 2004; Vol. 58(NO. 14): 2037-(2040).

DOI: 10.1016/j.matlet.2003.12.022

Google Scholar

[30] Asgharzadeh H, SimchiA. Supersolidus liquid phase sintering of Al6061/SiC metal matrix composites[J]. Powder. Metall. 2009; Vol. 52(No. 1): 28-35.

DOI: 10.1179/174329008x286721

Google Scholar

[31] J Chen, C G Bao, Yong Wang, et al. Microstructure and Lattice Parameters of AlN Particle Reinforced Magnesium Matrix Composites Fabricated by Powder Metallurgy [J]. Acta. Metall. Sinica. 2015; Vol. 28(No. 11): 1354-1363.

DOI: 10.1007/s40195-015-0333-6

Google Scholar

[32] Granato A, Lucke K J. Appl. Phys. 1956; 27: 583.

Google Scholar

[33] Zhang Y K. The damping property of SiCw reinforced magnesium matrix composite [D]. Harbin: Harbin Institute of Technology2006.

Google Scholar

[34] Y B Hu, J Deng, F S Pan, et al. Study on damping capacity of graphite particle reinforced AZ31 magnesium matrix composites[J]. J. Compos. Mater. 2011; Vol. 45(No. 5): 557-564.

DOI: 10.1177/0021998310376106

Google Scholar

[35] J N Wei, H F Cheng, Y F Zhang, et al. Effects of macroscopic graphite particulates on the damping behaviors of commercially pure aluminum[J]. Mater. Sci. Eng. 2002; A325: 444-453.

DOI: 10.1016/s0921-5093(01)01535-0

Google Scholar

[36] Deng K K, Li J C, Nie K, et al. High temperature damping behavior of as-deformed Mg Matrix influenced by micron and submicron SiCp[J]. Mater. Sci. Eng. A 2015; 624: 62-70.

DOI: 10.1016/j.msea.2014.11.069

Google Scholar

[37] Wang C J, Deng K K, Liang W. High temperature damping behavior controlled by submicron SiCp in bimodal size particle reinforced magnesium matrix composite[J]. Mater. Sci. Eng. A2016: 55-58.

DOI: 10.1016/j.msea.2016.05.055

Google Scholar

[38] Zhang J, Perez R, Lavernia E. Documentation of damping capacity of metallic, ceramic and metal-matrix composite materials[J]. Mater. Sci. 1993; 28(9): 2395–404.

DOI: 10.1007/bf01151671

Google Scholar

[39] Zhang J, Perez R, Lavernia E. Dislocation-induced damping in metal matrixcomposites[J]. Mater. Sci. 1993; 28(3): 835–46.

Google Scholar

[40] Prasad DS, Shoba C, Varma KR. Damping behavior of commonly usedreinforcement powders-an experimental approach [J]. Eng. Sci. Technol. 2015; 8: 674–9.

Google Scholar