[1]
Ahmadi A, Toroghinejad MR, Najafizadeh A. J. Mater. Des. 2014; 3: 13-9.
Google Scholar
[2]
Khan SU, Li CY, Siddiqui NA, Kim JK. J. Compos. Sci. Technol. 2011; 71(12): 1486-94.
Google Scholar
[3]
Wang J, Zhang Z, Yang G. The dependence of damping capacity of PMMCs onstrain amplitude[J]. Comput. Mater. Sci. 2000; 18(2): 205-11.
Google Scholar
[4]
Liu Q, Li M, Gu Y, Wang S, Zhang Y, Li Q, et al. Interlocked CNT networks withhigh damping and storage modulus[J]. Carbon 2015; 86: 46-53.
DOI: 10.1016/j.carbon.2015.01.014
Google Scholar
[5]
Hu J, Liu G, Tang S. Damping behavior in Al18B4O3w/Al composite containing aninterfacial layer with low melting point metal particles[J]. J. Alloys Compd. 2012; 513: 61-7.
DOI: 10.1016/j.jallcom.2011.09.073
Google Scholar
[6]
Lin R, Lu C. Modeling of interfacial friction damping of carbon nanotube-based nano-composite nanocoposites [J]. Mech. Syst. Sig. Process2010; 24(8): 2996-3012.
Google Scholar
[7]
Zhang J, Perez RJ, Lavernia EJ. Documentation of damping capacity of metallic, ceramic and metal-matrix composite materials[J]. Mater. Sci. 1993; 28(9): 2395-404.
DOI: 10.1007/bf01151671
Google Scholar
[8]
Zhang Y, Ma N, Li X, Wang H. Study on damping capacity aluminum compositereinforced with in situ TiAl3rod [J]. Mater. Des. 2008; 29(5): 1057-9.
Google Scholar
[9]
Colakoglu M. Factors effecting internal damping in aluminum[J]. Theor. Appl. Mech. 2004; 42(1): 95-105.
Google Scholar
[10]
Yadollahpour M, Kadkhodapour J, Ziaei-Rad S, Karimzadeh F. An experimentaland numerical investigation on damping capacity of nanocomposite[J]. Mater. Sci. Eng. A 2009; 507(1-2): 149-54.
DOI: 10.1016/j.msea.2009.01.016
Google Scholar
[11]
Zhang J, Perez RJ, Lavernia EJ. Dislocation-induced damping in metal matrixcomposites[J]. Mater. Sci. 1993; 28(3): 835-46.
Google Scholar
[12]
Hu Y B, Wang J F, Pan F S, et al. Research on high damping of magnesium matrix composites[J]. Mater. Eng. 2010; 01: 89-98.
Google Scholar
[13]
Zhang X Q, Wang H W, Liao L et al. In-situ synthesis method and damping characterization of magnesium matrix composites[J]. Composites Science and Technology 2007; 67(3-4): 720-727.
DOI: 10.1016/j.compscitech.2006.04.010
Google Scholar
[14]
Zhang S J, Li W X, Yu K, et al. Grain refining technology of magnesium alloys [J]. Foundry2001; 50(7): 373-376.
Google Scholar
[15]
Y Zhang, M H Song, Yan Li, et al. Preparation and properties of AIN particles reinforced Cu-base composites [J]. Journal of Heilongjiang University of Science & Technology 2016; 01: 48-52.
Google Scholar
[16]
Huang S J, Chen Z W. Grain refinement of AlNp/AZ91D magnesium metal-matrix composites[J]. Kovove. Mater. 2011; Vol. 49(No. 4): 259-264.
DOI: 10.4149/km_2011_4_259
Google Scholar
[17]
Fogagnolo J. B, Robert M. H, Torralba J. M. Mechanical alloyed AlN particle-reinforced Al-6061 matrix composites: Powder processing, consolidation and mechanical strength and hardness of the as-extruded materials [J]. Mater. Sci. Eng. A 2006; Vol. 426(No. 1-2): 85-94.
DOI: 10.1016/j.msea.2006.03.074
Google Scholar
[18]
Min Yang, Chao Qun Song, Xiu Zhong Liu, et al. Microstructure and Mechanical Properties of Al/AlN Surface Composite Fabricated via Multi-Pass Friction Stir Processing[J]. Appl. Mech. Mater. 2014; 192-197.
DOI: 10.4028/www.scientific.net/amm.490-491.192
Google Scholar
[19]
P T Li, Q T Hao. Research on preparation, re-melting and properties of AlN/ZL114 composite [J]. Hot Working Technology 2013; 12: 127-130.
Google Scholar
[20]
Yong Qiang Wei, Tao Jiang, Ya Lin Zhu, et al. Thermal conductivity numerical simulation of Double-sized A1NParticle Reinforced Epoxy Composites [J]. China Plastics Industry 2014; 02: 75-78+84.
Google Scholar
[21]
KatsarouLydia, Mounib Maher, Lefebvre, et al. Microstructure, mechanical properties and creep of magnesium alloy Elektron21 reinforced with AlN nanoparticles by ultrasound-assisted stirring[J]. Mater. Sci. Eng. A2016: 84-92.
DOI: 10.1016/j.msea.2016.02.042
Google Scholar
[22]
N M Kumara, S SKumaranb, L A Kumaraswamidhasa. High temperature investigation on EDM process of Al2618 alloy reinforced with Si3N4, AlN and ZrB2 in-situ composites [J]. J. Alloys Compd. 2016: 755-768.
DOI: 10.1016/j.jallcom.2015.12.175
Google Scholar
[23]
S Sankaranarayanana, M K Habibib, S Jayalakshmiac, et al. Nano-AlN particle reinforced Mg composites: microstructural and mechanical properties [J]. Mater. Sci. Technol. 2015; Vol. 31 (No. 9): 1122-1131.
Google Scholar
[24]
Kui Wang, Chun Xiang Cui, Qian Wang, et al. Fabrication and characterization of in situ AlN–TiN/Al composite ribbons[J]. Rare Metals 2015; Vol. 34(No. 9): 645-649.
DOI: 10.1007/s12598-014-0252-0
Google Scholar
[25]
Gajewska Marta, Dutkiewicz Jan, Morgiel Jerzy. Effect of reinforcement particle size on microstructure and mechanical properties of Al-Zn-Mg-Cu/AlNnano-composites produced using mechanical alloying [J]. J. Alloys Compd. 2014; Vol. 586(Suppl): S423-S427.
DOI: 10.1016/j.jallcom.2012.10.055
Google Scholar
[26]
Sandeep Fale, Ajay Likhite, Jatin Bhatt. The Wear Behavior of In-Situ Al–AlN Metal Matrix Composites[J]. Trans. Inst. Met. 2014; Vol. 67(No. 6): 841-849.
DOI: 10.1007/s12666-014-0407-6
Google Scholar
[27]
NamHye Rim, KimYoung Jin, Ahn Jung-Ho. Effects of Process Control Agent on the Synthesis of AlN-Carbon Nanotube by Ball-Milling[J]. J. NANOSCI. NANOTECHNO. 2013; No. 9, 5988-5991.
DOI: 10.1166/jnn.2013.7663
Google Scholar
[28]
H.M. Fu. Grain refinement by AlN particles in Mg–Al based alloys[J].J. Alloys Compd. 2009; Vol. 478(No. 1-2): 809-812.
DOI: 10.1016/j.jallcom.2008.12.029
Google Scholar
[29]
Jain Jayant, Kar Ashish M, Upadhyaya Anish. Effect of YAG addition on sintering of P/M 316L and 434L stainless steels[J]. Mater. Lett. 2004; Vol. 58(NO. 14): 2037-(2040).
DOI: 10.1016/j.matlet.2003.12.022
Google Scholar
[30]
Asgharzadeh H, SimchiA. Supersolidus liquid phase sintering of Al6061/SiC metal matrix composites[J]. Powder. Metall. 2009; Vol. 52(No. 1): 28-35.
DOI: 10.1179/174329008x286721
Google Scholar
[31]
J Chen, C G Bao, Yong Wang, et al. Microstructure and Lattice Parameters of AlN Particle Reinforced Magnesium Matrix Composites Fabricated by Powder Metallurgy [J]. Acta. Metall. Sinica. 2015; Vol. 28(No. 11): 1354-1363.
DOI: 10.1007/s40195-015-0333-6
Google Scholar
[32]
Granato A, Lucke K J. Appl. Phys. 1956; 27: 583.
Google Scholar
[33]
Zhang Y K. The damping property of SiCw reinforced magnesium matrix composite [D]. Harbin: Harbin Institute of Technology2006.
Google Scholar
[34]
Y B Hu, J Deng, F S Pan, et al. Study on damping capacity of graphite particle reinforced AZ31 magnesium matrix composites[J]. J. Compos. Mater. 2011; Vol. 45(No. 5): 557-564.
DOI: 10.1177/0021998310376106
Google Scholar
[35]
J N Wei, H F Cheng, Y F Zhang, et al. Effects of macroscopic graphite particulates on the damping behaviors of commercially pure aluminum[J]. Mater. Sci. Eng. 2002; A325: 444-453.
DOI: 10.1016/s0921-5093(01)01535-0
Google Scholar
[36]
Deng K K, Li J C, Nie K, et al. High temperature damping behavior of as-deformed Mg Matrix influenced by micron and submicron SiCp[J]. Mater. Sci. Eng. A 2015; 624: 62-70.
DOI: 10.1016/j.msea.2014.11.069
Google Scholar
[37]
Wang C J, Deng K K, Liang W. High temperature damping behavior controlled by submicron SiCp in bimodal size particle reinforced magnesium matrix composite[J]. Mater. Sci. Eng. A2016: 55-58.
DOI: 10.1016/j.msea.2016.05.055
Google Scholar
[38]
Zhang J, Perez R, Lavernia E. Documentation of damping capacity of metallic, ceramic and metal-matrix composite materials[J]. Mater. Sci. 1993; 28(9): 2395–404.
DOI: 10.1007/bf01151671
Google Scholar
[39]
Zhang J, Perez R, Lavernia E. Dislocation-induced damping in metal matrixcomposites[J]. Mater. Sci. 1993; 28(3): 835–46.
Google Scholar
[40]
Prasad DS, Shoba C, Varma KR. Damping behavior of commonly usedreinforcement powders-an experimental approach [J]. Eng. Sci. Technol. 2015; 8: 674–9.
Google Scholar