Synthesis and Characterization of Alumina-Ceria Core-Shell Nanoparticles Using a Wet Chemical Method

Article Preview

Abstract:

In this study, α-Al2O3-CeO2 core-shell nanoparticles were synthesized from the cerium acetate and the commercial α-Al2O3 nanoparticles as the starting materials via a wet chemical method. Poly (acrylic acid) (PAA) as an additive compound was used for the surface modification of alumina nanoparticles. Also, the effects of PAA content, pH value and calcination temperature on the synthesis behavior of α-Al2O3-CeO2 nanoparticles were investigated. The formation of core-shell structure was investigated using X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM) equipped with energy dispersive X-ray spectroscopy (EDS). The results indicated that at the PAA=1.5 wt. %, pH=6 and calcination temperature=1150°C (as optimal conditions), the core-shell nanoparticles with alumina core and ceria shell and homogeneous size distribution were synthesized successfully.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-111

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Balagopal, K.G.K. Warrier, A.D. Damodaran, K.S. Krishnan, Colloidal processing of sol-sprayed ceramic particulate composites, J. Eur. Cera. Soc. 12 (1993) 449-453.

DOI: 10.1016/0955-2219(93)90078-6

Google Scholar

[2] J. Fang, A. M. Thompson, M. P. Harmer, H. M. Chan, Effect of Yttrium and Lanthanum on the Final‐Stage Sintering Behavior of Ultrahigh‐Purity Alumina, J. Am. Ceram. Soc. 80 (1997) 2005-(2012).

DOI: 10.1111/j.1151-2916.1997.tb03084.x

Google Scholar

[3] A. Krell, P. Blank, H. Ma, T. Hutzler, M. Nebelung, Processing of High‐Density Submicrometer Al2O3 for New Applications, J. Am. Ceram. Soc. 86 (2003) 546-53.

DOI: 10.1111/j.1151-2916.2003.tb03339.x

Google Scholar

[4] C. Scott, M. Kaliszewski, C. Greskovich, L. Levinson, Conversion of Polycrystalline Al2O3 into Single‐Crystal Sapphire by Abnormal Grain Growth, J. Am. Ceram. Soc. 85 (2002) 1275-1280.

DOI: 10.1111/j.1151-2916.2002.tb00257.x

Google Scholar

[5] S.K.C. Pillai, B. Baron, M. J. Pomeroy, S. Hampshire, Effect of oxide dopants on densification, microstructure and mechanical properties of alumina-silicon carbide nanocomposite ceramics prepared by pressureless sintering, J. Eur. Ceram. Soc. 24 (2004).

DOI: 10.1016/j.jeurceramsoc.2003.10.024

Google Scholar

[6] D.A. Rani, Y. Yoshizawa, K. Hirao, Y. Yamauchi, Effect of Rare‐Earth Dopants on Mechanical Properties of Alumina, J. Am. Ceram. Soc. 87 (2004) 289-292.

DOI: 10.1111/j.1551-2916.2004.00289.x

Google Scholar

[7] G. C. Wei, A. Hecker, D.A. Goodman, Translucent polycrystalline alumina with improved resistance to sodium attack, J. Am. Ceram. Soc. 84 (2001) 2853-2862.

DOI: 10.1111/j.1151-2916.2001.tb01105.x

Google Scholar

[8] R. Apetz, M.P. Bruggen, Transparent Alumina: A Light‐Scattering Model, J. Am. Ceram. Soc. 86 (2003) 480-486.

DOI: 10.1111/j.1151-2916.2003.tb03325.x

Google Scholar

[9] A.M. Arias, M.F. Garcia, L.N. Salamanca, R.X. Valenzuela, J.C. Conesa, J. Soria, Structural and Redox Properties of Ceria in Alumina-Supported Ceria Catalyst Supports, J. Phys. Chem. B, 104 (2000) 4038-4046.

DOI: 10.1021/jp992796y

Google Scholar

[10] L. Dong, Y. Hu, S.T. Jin, J. Wang, W. Ding, Y. Chen, Dispersion Behavior of Copper Oxide on the Mixed CeO2+γ-Al2O3 Support, Chem. Mater. 13 (2001) 4227-4232.

DOI: 10.1021/cm0008462

Google Scholar

[11] S. Bosew, Y. Wu, Synthesis of Al2O3–CeO2 Mixed Oxide Nano-Powders, J. Am. Ceram. Soc. 88 (2005) 1999-(2002).

Google Scholar

[12] R. Pournajaf, S.A. Hassanzadeh-Tabrizi, M. Ghashan, Effect of surfactants on the synthesis of Al2O3–CeO2 nanocomposite using a reverse microemulsion method, Ceram. Int. 40 (2014) 4933-4937.

DOI: 10.1016/j.ceramint.2013.10.086

Google Scholar

[13] V.V. Srdić, B. Mojić, M. Nikolić, S. Ognjanović, Recent progress on synthesis of ceramics core/shell nanostructures, Process. Appl. Ceram. 7 (2013) 45-62.

Google Scholar

[14] M. Wiśniewska, S. Chibowski, T. Urban, Effect of the type of polymer functional groups on the structure of its film formed on the alumina surface-Suspension stability, React. Funct. Polym. 72 (2012) 791-798.

DOI: 10.1016/j.reactfunctpolym.2012.08.005

Google Scholar

[15] B. Chanteau, J. Fresnais, J.F. Berret, Electrosteric enhanced stability of functional sub-10 nm cerium and iron oxide particles in cell culture medium, Langmuir, 25 (2009) 9064-9070.

DOI: 10.1021/la900833v

Google Scholar

[16] A. Sehgal, Y. Lalatonne, J.F. Berret, M. Morvan, Precipitation-redispersion of cerium oxide nanoparticles with poly (acrylic acid): Toward stable dispersions, Langmuir 21 (2005) 9359-9364.

DOI: 10.1021/la0513757

Google Scholar

[17] L Liu, S. Z Luo, B Wang, Z Guo, Investigation of small molecular weight poly (acrylic acid) adsorption on γ-alumina, Appl. Surf. Sci. 345 (2015) 116-121.

DOI: 10.1016/j.apsusc.2015.03.145

Google Scholar

[18] M. Alifanti, B. Baps, N. Blangenois, J. Naud, P. Grange, B. Delmon, Characterization of CeO2-ZrO2 mixed oxides. Comparison of the citrate and sol-gel preparation methods, Chem. Mater. 15 (2003) 395-403.

DOI: 10.1021/cm021274j

Google Scholar