Characterization Analysis According to Growth Temperature of Carbon Nanowall on Metal Coated Substrate for Electrode Application of Energy Storage

Article Preview

Abstract:

Secondary cells, which are the core storage media of energy storage systems (ESS), and carbon nanowalls (CNWs), which are expected to improve the performance of supercapacitors while being used as their electrodes, were investigated in this study. CNWs were directly grown on the substrate, and the substrate was a Si wafer with a nickel layer deposited on top of it. The nickel layer was deposited with the RF-magnetron sputtering method using a 4-inch Ni target. The CNWs were grown on the prepared substrate using microwave plasma-enhanced chemical vapor deposition (PECVD). The substrate temperature was changed from 550 to 800°C by 50°C increments to identify the growth characteristics according to the growth temperature. The surficial and cross-sectional images according to the temperature were analyzed using a field emission scanning electron microscope (FE-SEM). It was confirmed that the density of the CNWs increased along with the temperature. Especially, it was confirmed that the density increased dramatically at 750°C or higher.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-119

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.C. H. Steele, A. Heinzel, Materials for fuel-cell technologies, Nature, 414 (2001) 345-352.

DOI: 10.1038/35104620

Google Scholar

[2] E. Antolini, Carbon supports for low-temperature fuel cell catalysts, Appl. Catal. B, 88 (2009) 1-24.

Google Scholar

[3] S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[4] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. jiang, Y. Zhang, S. V. Dubonos, I. V. Griforieva, and A. A. Firsov, Electric Field Effect in Atomlcally Thin Carbon Films, Science, 306 (2004) 666-609.

DOI: 10.1126/science.1102896

Google Scholar

[5] Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, A. G. Rinzler, Transparent, Conductive Carbon Nanotube Films, Science, 306 (2004) 1273-1276.

DOI: 10.1126/science.1101243

Google Scholar

[6] B. Liu, W. Ren, L. Gao, S. Li, S. Pei, C. Liu, C. Jiang, and H. Cheng, Metal-Catalyst-Free Growth of Single-Walled Carbon Nanotubes, J. Am. Chem. Soc., 131 (2009) 2082-(2083).

DOI: 10.1021/ja8093907

Google Scholar

[7] H. Kim, A. A. Abdala, and C. W. Macosko, Graphene/Polymer Nanocomposites, Macromolesules, 43 (2010) 6515-6530.

DOI: 10.1021/ma100572e

Google Scholar

[8] Y. Ando, X. Zhao, M. Ohkohchi, Production of Petal-like Graphite Sheets by Hydrogen Arc Discharge, Carbon, 35 (1997) 153-158.

DOI: 10.1016/s0008-6223(96)00139-x

Google Scholar

[9] Y. Wu, P. Qiao, T. Chong, Z. Shen, Carbon Nanowalls Grown by Microwave Plasma Enhanced Chemical Vapor Deposition, Adv. Mater., 14 (2002) 64-67.

DOI: 10.1002/1521-4095(20020104)14:1<64::aid-adma64>3.0.co;2-g

Google Scholar

[10] A. Grill, Diamond-like carbon: state of the art, Diamond Relat. Mater., 8 (1999) 428-434.

Google Scholar

[11] A. K. Geim, K. S. Novoselov, The rise of graphene, Nat. Mater., 6 (2007) 183-191.

Google Scholar

[12] S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[13] S. Y. Kim, B. Hong, J-H. Lee, and W. S. Choi, Substrate temperature effect on the growth of carbon nanowalls synthesized via microwave PECVD, Mater. Res. Bull., 58 (2014) 112-116.

DOI: 10.1016/j.materresbull.2014.07.001

Google Scholar

[14] Y. H. Jung, B. Hong, and W. S. Choi, Post-plasma Treatment of a Carbon Nanowall for Use as a Counter Electrode in a Dye-sensitized Solar Cell, J. Korean Phys. SOC., 65 (2014) 291-296.

DOI: 10.3938/jkps.65.291

Google Scholar

[15] M. A. S. M. Haniff, S. M. Hafiz, K. A. A. Wahid, Z. Endut, H. W. Lee, D. C. S. Bien, I. A. Azid, M. Z. Abdullah, N. M. Huang, and S. A. Rahman, Piezoresistive effects in controllable defective HFTCVD graphene-based flexible pressure sensor, Sci. Rep., 5 (2015).

DOI: 10.1038/srep14751

Google Scholar

[16] S. Kurita, A. Yoshimura, H. Kawamoto, T. Uchida, K. Kojima, and M. Tachibana, Raman spectra of carbon nanowalls grown by plasma-enhanced chemical vapour deposition, J. Appl. Phys., 97 (2005) 104320-104325.

DOI: 10.1063/1.1900297

Google Scholar