[1]
B.C. H. Steele, A. Heinzel, Materials for fuel-cell technologies, Nature, 414 (2001) 345-352.
DOI: 10.1038/35104620
Google Scholar
[2]
E. Antolini, Carbon supports for low-temperature fuel cell catalysts, Appl. Catal. B, 88 (2009) 1-24.
Google Scholar
[3]
S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56-58.
DOI: 10.1038/354056a0
Google Scholar
[4]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. jiang, Y. Zhang, S. V. Dubonos, I. V. Griforieva, and A. A. Firsov, Electric Field Effect in Atomlcally Thin Carbon Films, Science, 306 (2004) 666-609.
DOI: 10.1126/science.1102896
Google Scholar
[5]
Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, A. G. Rinzler, Transparent, Conductive Carbon Nanotube Films, Science, 306 (2004) 1273-1276.
DOI: 10.1126/science.1101243
Google Scholar
[6]
B. Liu, W. Ren, L. Gao, S. Li, S. Pei, C. Liu, C. Jiang, and H. Cheng, Metal-Catalyst-Free Growth of Single-Walled Carbon Nanotubes, J. Am. Chem. Soc., 131 (2009) 2082-(2083).
DOI: 10.1021/ja8093907
Google Scholar
[7]
H. Kim, A. A. Abdala, and C. W. Macosko, Graphene/Polymer Nanocomposites, Macromolesules, 43 (2010) 6515-6530.
DOI: 10.1021/ma100572e
Google Scholar
[8]
Y. Ando, X. Zhao, M. Ohkohchi, Production of Petal-like Graphite Sheets by Hydrogen Arc Discharge, Carbon, 35 (1997) 153-158.
DOI: 10.1016/s0008-6223(96)00139-x
Google Scholar
[9]
Y. Wu, P. Qiao, T. Chong, Z. Shen, Carbon Nanowalls Grown by Microwave Plasma Enhanced Chemical Vapor Deposition, Adv. Mater., 14 (2002) 64-67.
DOI: 10.1002/1521-4095(20020104)14:1<64::aid-adma64>3.0.co;2-g
Google Scholar
[10]
A. Grill, Diamond-like carbon: state of the art, Diamond Relat. Mater., 8 (1999) 428-434.
Google Scholar
[11]
A. K. Geim, K. S. Novoselov, The rise of graphene, Nat. Mater., 6 (2007) 183-191.
Google Scholar
[12]
S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56-58.
DOI: 10.1038/354056a0
Google Scholar
[13]
S. Y. Kim, B. Hong, J-H. Lee, and W. S. Choi, Substrate temperature effect on the growth of carbon nanowalls synthesized via microwave PECVD, Mater. Res. Bull., 58 (2014) 112-116.
DOI: 10.1016/j.materresbull.2014.07.001
Google Scholar
[14]
Y. H. Jung, B. Hong, and W. S. Choi, Post-plasma Treatment of a Carbon Nanowall for Use as a Counter Electrode in a Dye-sensitized Solar Cell, J. Korean Phys. SOC., 65 (2014) 291-296.
DOI: 10.3938/jkps.65.291
Google Scholar
[15]
M. A. S. M. Haniff, S. M. Hafiz, K. A. A. Wahid, Z. Endut, H. W. Lee, D. C. S. Bien, I. A. Azid, M. Z. Abdullah, N. M. Huang, and S. A. Rahman, Piezoresistive effects in controllable defective HFTCVD graphene-based flexible pressure sensor, Sci. Rep., 5 (2015).
DOI: 10.1038/srep14751
Google Scholar
[16]
S. Kurita, A. Yoshimura, H. Kawamoto, T. Uchida, K. Kojima, and M. Tachibana, Raman spectra of carbon nanowalls grown by plasma-enhanced chemical vapour deposition, J. Appl. Phys., 97 (2005) 104320-104325.
DOI: 10.1063/1.1900297
Google Scholar