[1]
M. Warmuzek, Aluminum-Silicon Casting Alloys. An Atlas of Microfractographs, ASM International (2004).
Google Scholar
[2]
G.L. Pintilei, V.I. Crismaru, M. Abrudeanu, C. Munteanu, D. Luca, B. Istrate, The influence of ZrO2/20%Y2O3 and Al2O3 deposited coatings to the behavior of an aluminum alloy subjected to mechanical shock, Applied Surface Science 352. (2015).
DOI: 10.1016/j.apsusc.2015.05.111
Google Scholar
[3]
M. Nicoara, A. Raduta, C. Locovei, Computer-aided evaluation of particle distribution in metallic matrix composites, Proceedings of the Euro International. Powder Metallurgy Congress and Exhibition, Euro PM 2011, 110–117.
Google Scholar
[4]
M.A. Luca, T. Pisu Machedon, Vibration influence on polycrystalline structure and internal friction of the material deposited by welding, Journal of Optoelectronics and Advanced Materials. 7-8 (2013) 655–661.
Google Scholar
[5]
K. Labisz, M. Krupiński, L.A. Dobrzański, Phases morphology and distribution of the Al-Si-Cu alloy, Journal of Achievements in Materials and Manufacturing Engineering. 37(2) (2009) 309–316.
Google Scholar
[6]
F. Taghavi, H. Saghafian, Y.H.K. Kharrazi, Study on the ability of mechanical vibration for the production of thixotropic microstructure in A356 aluminum alloy, Materials and Design. 30 (2009) 115–121.
DOI: 10.1016/j.matdes.2008.04.034
Google Scholar
[7]
Y. Sun, S.P. Pang, X.R. Liu, Z.R. Yang, G.X. Sun, Nucleation and growth of eutectic cell in hypoeutectic Al−Si alloy, Transaction of Nonferrous Metals Society of China Series, Elsevier. 21 (2011) 2186–2191.
DOI: 10.1016/s1003-6326(11)60993-x
Google Scholar
[8]
K. Al-Helal, I.C. Stone, Z. Fan, Simultaneous primary Si refinement and eutectic modification in hypereutectic Al-Si alloys, Transactions of the Indian Institute of Metals. 65(6) (2012) 663–667.
DOI: 10.1007/s12666-012-0171-4
Google Scholar
[9]
H. Singh, A.M. Gokhale, A. Tewari, S. Zhang, Y. Mao, Three-dimensional visualization and quantitative characterization of primary silicon particles in an Al–Si base alloy, Scripta Materialia. 61 (2009) 441–444.
DOI: 10.1016/j.scriptamat.2009.04.040
Google Scholar
[10]
H.S. Liu, X. Qiao, Z.H. Chen, R.P. Jiang, X.Q. Li, Effect of ultrasonic vibration during casting on microstructures, and properties of 7050 aluminum alloy, Journal of Materials Science. 46 (2011) 3923–3927.
DOI: 10.1007/s10853-011-5316-z
Google Scholar
[11]
G. Chirita, I. Stefanescu, D. Soares, F.S. Silva, Influence of vibration on the solidification behaviour and tensile properties of an Al–18wt%Si alloy, Materials and Design. 30(5) (2009) 1575-1580.
DOI: 10.1016/j.matdes.2008.07.045
Google Scholar
[12]
S.R. Wang, R. Ma, Y.Z. Wang, Y. Wang, L. Yang, Growth mechanism of primary silicon in cast hypoeutectic Al−Si alloys, Transaction of Nonferrous Metals Society of China Series, Elsevier. 22 (2012) 1264–1269.
DOI: 10.1016/s1003-6326(11)61314-9
Google Scholar
[13]
J. Barbosa, H. Puga, Ultrasonic melt processing in the low pressure investment casting of Al alloys, Journal of Materials Processing Technology. 244 (2017) 150–156.
DOI: 10.1016/j.jmatprotec.2017.01.031
Google Scholar
[14]
R. Haghayeghi, A. Heydari, P. Kapranos, The effect of ultrasonic vibrations prior to high pressure die-casting of AA7075, Materials Letters. 153 (2015) 175–178.
DOI: 10.1016/j.matlet.2015.04.034
Google Scholar
[15]
R.R. Mishra, A.K., Structure-property correlation in Al–Zn–Mg alloy cast developed through in-situ microwave casting, Materials Science & Engineering A. 688 (2017) 532–544.
DOI: 10.1016/j.msea.2017.02.021
Google Scholar
[16]
M.H. Tierean, L.S. Baltes, A. Banea, Influence of the vibrations on AlSi10Mg casting alloy structure, Advanced Materials Research. 1114 (2015) 166-171.
DOI: 10.4028/www.scientific.net/amr.1114.166
Google Scholar
[17]
M.H. Tierean, L.S. Baltes, M. Luca, A. Banea, Measurements of dynamic Young modulus of AlSi10Mg alloy cast in vibrating field, Journal of Optoelectronics and Advanced Materials. 11-12 (2015) 1868-1873.
Google Scholar
[18]
C.M. Dinnis, A.K. Dahle, J.A. Taylor, Three-dimensional analysis of eutectic grains in hypoeutectic Al–Si alloys, Materials Science and Engineering A. 392 (2005) 440–448.
DOI: 10.1016/j.msea.2004.10.037
Google Scholar
[19]
B. Dybowski, B. Adamczyk-Cieślak, K. Rodak, I. Bednarczyk, A. Kiełbus, J. Mizera, The microstructure of AlSi7Mg alloy in as cast condition, Solid State Phenomena. 229 (2015) 3–10.
DOI: 10.4028/www.scientific.net/ssp.229.3
Google Scholar
[20]
E. Tillová, M. Chalupová, L. Hurtalová, P. Palček, Scanning electron microscopy identification of intermetallic phases in Al-Si cast alloys, Acta Metallurgica Slovaca. 3 (2013) 196–201.
DOI: 10.12776/amsc.v3i0.127
Google Scholar
[21]
M. Gupta, S. Ling, Microstructure and mechanical properties of hypo/ hyper-eutectic Al–Si alloys synthesized using a near-net shape forming technique, Journal of Alloys and Compounds. 287 (1999) 284–294.
DOI: 10.1016/s0925-8388(99)00062-6
Google Scholar
[22]
W.D. Callister Jr. (Ed. ), Materials Science and Engineering: An Introduction, John Wiley and Sons Inc, New York, (1994).
Google Scholar
[23]
I. Lichioiu. B. Varga, V. Geaman, Analysis of phase transformation in hipoeutectic Al-Si alloys, Bulletin of the Transilvania University of Brasov, series I: Engineering Sciences. 3(52) (2010) 189-194.
Google Scholar
[24]
T. Ciućkaa, Influence of vibrations during crystallization on mechanical properties and porosity of AlSi13Cu2 alloy, Archives of foundry engineering. special issue 1 (2010) 127-130.
Google Scholar
[25]
X. Jian, Q. Han, Formation of hypereutectic silicon particles in hypoeutectic Al-Si alloys under the influence of high-intensity ultrasonic vibration, China foundry. 10 (2013) 118-123.
Google Scholar